F. Mertes
L. Jenney

AUGUST 1974

FINAL REPORT

DOCUMEMT IS AVAILAELE TO THE PUBLIC
TMROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE. SPRINGFIELO. VIRGINIA 22151.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
 OFFICE OF THE SECRETARY
 Office of the Assistant Secretary
 for Systems Development and Technology
 Office of Systems Engineering
 Washington DC 20590

"y

$$
\begin{aligned}
& \text {.. }: 7
\end{aligned}
$$

Form DOT F 1700.7 (8-72) \quad Reproduction of completed poge authorized \qquad


```
NOTJCE
This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or use
thereof.
```



```
CONTENTS - VOL. III
```

Section - Page
1.0 PREFACE
1.1 ADVANCED AIR TRAFFIC MANAGEMENT SYSTEM STUDY 1.1-1
1.2 SUMMARY OF VOLUME III 1.2-1
2.0 INTRODUCTION
2.1 BACKGROUND 2.1-1
2.2 THE PROBLEM 2.2-1
2.3 REVIEW OF AVAILABLE METHODOLOGY 2.3-1
2.4 APPROACH 2.4-1
2.5 SUMMARY OF RESULTS 2.5-1
3.0 METHODOLOGY
3.1 TASK DESCRIPTIONS 3.1-1
3.2 PERFORMANCE CAPABILITIES 3.2-1
3.3 MAN-MACHINE PERFORMANCE RATING 3.3-1
3.4 DATA COLLECTION 3.4-1
3.5 DATA ANALYSIS 3.5-1
4.0 LEVELS OF MAN-MACHINE ALLOCATION
4.1 AUTOMATION INDEX 4.1-1
4.2 AUTOMATION LEVELS 4.2-1
5.0 CONCLUSIONS
5.1 METHODOLOGICAL IMPLICATIONS 5.1-1
5.2 APPLICATIONS OF THE AUTOMATION INDEX 5.2-1
APPENDICES
A. SUMMARY OF MAN AND MACHINE PERFORMANCE CAPABILITIES A-1
B. MAN-MACHINE TASK VS. CAPABILITIES MATRIX B-1
C. TASK PERFORMANCE CAPABILITY RATINGS C-1
D. DISTRIBUTION OF RATER SCORES D-1
E. AUTOMATION INDICES AND TASK RANKINGS E-1
F. STATISTICAL PROCEDURES AND FORMULAE F-1G. REFERENCESG-1
Figure Page
3.5-1 TWENTY-INTERVAL RAW SCORE DISTRIBUTION FOR A SAMPLE 3.5-3
OF THREE RATERS
3.5-2 NORMALIZED STANDARD SCORE DISTRIBUTION FOR RATER 11 3.5-6
4.1-1 TASKS ARRAYED BY AUTOMATION INDEX 4.1-24
4.2-1 AUTOMATION LEVEL BOUNDARIES 4.2-2
D-1 COMBINED FREQUENCY DISTRIBUTION OF RAW SCORES D-3
D-2 COMBINED FREQUENCY DISTRIBUTION OF CONVERTED SCORES D-4
D-3 FREQUENCY DISTRIBUTION OF TASKS BY AUTOMATION D-5 INDEX (GEOMETRIC MEAN SCORE)

```
LIST OF TABLES - VOL. III
```

Table Page
3.2-1 CLASSIFICATION OF PERFORMANCE CAPABILITIES 3.2-4
3.3-1 SUMMARY OF JUDGMENTS ON RELEVANCE OF PERFORMANCE 3.3-1 CAPABILITIES TO TASKS
3.4-1 RATER SPECIALTIES AND ORGANIZATIONAL AFFILIATION 3.4-1
3.4-2 ANALYSIS OF RATER BACKGROUND AND EXPERIENCE 3.4-2
3.5-1 ANALYSIS OF RAW SCORE DISTRIBUTION FOR ALL RATERS 3.5-5
3.5-2 RAW SCORE AVERAGES FOR EACH CAPABILITY 3.5-8
3.5-3 TASKS WITH RATER-INITIATED DELETIONS OR INSERTIONS 3.5-12
3.5-4 ANALYSIS OF VARIANCE DUE TO ORGANIZATIONAL AFFILIATION 3.5-13
3.5-5 ANALYSIS OF VARIANCE DUE TO OCCUPATIONAL SPECIALTY 3.5-14
4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS 4.1-3
4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX 4.1-14
4.1-3 RANGE AND CUTTING SCORE FOR FOUR INDICATORS OF 4.1-25 'CONFIDENCE'
4.2-1 TASKS PRESENTLY AUTOMATED IN NAS/ARTS III 4.2-3
4.2-2 PERCENT AUTOMATION BY FUNCTION AND AUTOMATION LEVEL 4.2-12
D-1 DISTRIBUTION OF RAW SCORES BY RATER D-2
E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC E-2 CONTROL TASKS
E-11
E-2 COMPARISON OF RANK ORDER OF AIR TRAFFIC CONTROL TASKS BY THREE AUTOMATION INDICES

1.0 PREFACE

1.1 ADVANCED AIR TRAFFIC MANAGEMENT SYSTEM STUDY

This report is one of a series produced by the TRW-Planar group in a study of automation applications for an Advanced Air Traffic Management System (AATMS), work performed for the Department of Transportation, Transportation Systems Center (DOT/TSC) under contract number DOT-TSC-512. The reports in this series are:

- Automation Applications in an Advanced Air Traffic Management System - Volume I, Summary. TRW Report No. 22265-W008-RU-00, December 1973.
This is a summary document, stating the background and objectives of the study and describing the major study results. It also contains a discussion of the implications of the results for an advanced air traffic management system and a suggested strategy for implementation of automation.
- Automation Applications in an Advanced Air Traffic Management System - Volume II, Function Analysis of Air Traffic Management. TRW Report No. 22265-W006-RU-00, December 1973.
This volume provides an analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs among the tasks is specified.
- Automation Applications in an Advanced Air Traffic Management System - Volume III, Methodology for Man-Machine Task Allocation. TRW Report No. 22265-W007-RU-00, December 1973.
This volume contains a description of man and machine performance capabilities and an explanation of the methodology employed to allocate tasks to human or automated resources. It also presents recommended allocations of tasks at five incremental levels of automation.
- Automation Applications in an Advanced Air Traffic Management System - Volume IV, Automation Requirements. TRW Report No. 22265-W009-RU-00, December 1973.
This volume is a presentation of automation requirements for an advanced air traffic management system in terms of controller work force, computer resources, controller productivity, system manning, failure effects, and control/display requirements. It also includes a discussion of the application of the study results to the design and development of AATMS.
- Automation Applications in an Advanced Air Traffic Management System - Volume V, DELTA Simulation Mode1. TRW Report No. 22265-W010-RU-00, December 1973.
This volume includes all documentation of the DELTA (Determine Effective Levels of Task Automation) computer simulation developed by TRW for use in the Automation Applications Study. The volume includes a user manual, programmers manual, test case, and test case results.

The results which have been documented in these volumes represent a team effort. However, it is most appropriate to recognize the contributions of the following individuals who were responsible for major elements of the study:

Mr. R. Jones	TRW	Volume II, Functional Analysis
Mr. L. Jenney	The Planar Corp.	Volume III, Man-Machine Allocation Methodology and Volume IV, Failure Modes and Displays
Mr. E. C. Barkley	TRW	Volume V, DELTA Simulation
Mr. K. Willis	Metis Corp.	Volume V, Algorithm Development

1.2 SUMMARY OF VOLUME III

The man-machine allocation methodology employed in the Automation Applications Study was developed in response to the need for objective and quantifiable technique to assign air traffic management tasks to human and computer resources. The immediate objective was to examine each of the 265 generic air traffic management tasks identified during the study uild to document the rationale for allocating these tasks to men or machines at successively more advanced levels of automation. These allocations and the task analysis itself were intended to serve as the basis for a detailed study of automation applications in AATMS. A second, and broader, purpose of the methodology developed here was to provide a more systematic approach and an objective, repeatable procedure for relating man-machine performance capabilities to tasks in the design of complex systems. Thus, the methodology employed in this study, while devised primarily to serve the needs of the AATMS study, also provides a general purpose tool for human factors and systems engineering.

The man-machine allocation methodology represents a synthesis of three separate disciplines - systems engineering, human factors, and psychometrics. At the beginning of the study an extensive review was made of systems design and human factors research literature pertaining to man-machine performance. (A compilation of the findings is presented in Appendix A of the report.) This survey formed the basis for construction of six performance capability scales by which to evaluate each of the 265 air traffic management tasks.

The evaluation was carried out in four steps. First, each task was analyzed to determine which of the six basic performance capabilities were required to accomplish the task. Next, a group of thirty-two judges with experience in systems analysis, human factors, computer applications, or air traffic control were asked to assign a numerical rating to each task for each of the required performance capabilities. These ratings, over 22,000 individual data points, were then aggregated across judges and performance capabilities to obtain an index of automation priority for each task. As a final step, the tasks were assigned to one of five incremental levels of automation according to this index.

This volume contains a detailed description of the methodology outlined above. It begins with a summary of the general problem of manmachine allocation and a review of the available methodology. This is followed by an account of the method by which performance capability scales and manmachine performance rating instruments were developed. Next is a description of data collection procedures and a discussion of the statistical techniques used to reduce the data to a composite automation index for each task. Five levels of system automation are quantitatively defined; the characteristics of each level are described; and the relationships among successive levels are examined. The report concludes with a discussion of the application of the findings to subsequent analysis of air traffic management system requirements and an assessment of the utility of the methodology in other types of system design and development problems.

2.0 INTRODUCTION

2.1 BACKGROUND

Automation of the air traffic control system has been the subject of extensive study for over twenty years. Historically, automation has been considered the way both to achieve greater safety and capacity in the national aviation system and to lessen the workload of air traffic controllers. More recently, as the demands on the national aviation system have increased, government policy has tended toward the view that automation is not just desirable but mandatory if the system is to continue to provide a level of safety and capacity consistent with the public interest. The developmental effort which has led to the NAS Stage A and ARTS III systems was undertaken with the objective of introducing automation in the enroute and terminal portions of the system. The engineering development of the upgraded Third Generation System and the study of AATMS now being pursued are based on the proposition that still more advanced degrees of automation will be necessary to accommodate anticipated growth in commercial and general aviation while also providing increased safety for airspace users.

In making the transition from the ATC system of today to a more automated system of 1990-2020, there are two central concerns. First, in which parts of the system will automation produce the greatest benefits in terms of safety, capacity, and limiting the growth in ATC costs? Second, in what order should automated features be introduced into the ATC system?

The latter question, the sequence of automation, is important for several reasons. Foremost is that the system must provide continuity of service as it progresses toward its ultimate level of automation. Hence, automation must be introduced in an evolutionary, rather than a revolutionary, way. For economic reasons it is also necessary to spread the process of automation out over several years so that the public and private sectors of the economy can comfortably absorb the RDT\&E and 0\&M costs. Further, since not all of the technology appropriate for advanced levels of automation is presently available, the design and development of the system must be paced incrementally in step with technological progress. Finally, of course, the controllers themselves must be considered. Automation must be introduced
gradually to allow men to learn and perfect the new skills required and to provide for an orderly transition from today's controller work force to one of perhaps greatly different size and composition by the year 2000.

The concept of incremental automation is not unique to the AATMS study. Nearly all of the major studies of air traffic control system automation, beginning with such early programs as Data Processing Central in 1960 and National Airspace Utilization System in 1962, have been predicated upon the idea of sequential introduction of automated features. For example, the National Airspace Utilization System report (FAA/SRDS, 1962) referred to an "automation ladder," starting with a wholly manual system and progressing through automated data processing and tracking to computer-aided evaluation and decision-making. In another study undertaken at about the same time (Buckley and Green, 1962), an analysis was made of information processing and display in the air traffic control system; and the authors identified thirteen incremental stages of man-machine function allocation in going from a manual to a "fully automated" system.

More recent studies of ATC automation (e.g., MITRE, 1972) continue to speak of "generations" of systems, meaning a phased and evolutionary introduction of automated features. The basic FAA planning documents (The National Aviation System Policy Summary and The National Aviation System Ten Year Plan) reflect the concept of progressive automation in laying out the program of transition from the manual second generation system to the third generation and eventually to Phases I and II of the Upgraded Third Generation system.

Incremental automation raises two fundamental questions about the nature of man-machine relationships in complex systems. First, on what basis shall the decision to allocate tasks to man or machine be made? This implies that there must be criteria of choice and decision rules. Second, if automation is to proceed step by step, how is the priority for allocation of tasks to machines to be established? This implies that the basic allocation decision has to be quantified in some way which will permit tasks to be arrayed ordinally as a man-machine performance continuum. These two questions, task allocation criteria and automation priorities, are the major methodological problems addressed in this report.

2.2 THE PROBLEM

The problem of allocating tasks to man or machine is as old as the industrial age itself. However, the problem was not attacked systematically until about fifty years ago with the advent of industrial engineering, and it has not been treated as a researchable problem until the last two decades. Initially, investigation centered around the machine as an adjunct to man, i.e., ways were sought to use the machine to supplement or augment man's physical capabilities. Mechanical and electro-mechanical devices which were stronger, faster, more accurate, and more enduring than man were developed and placed at his service. By the 1940's, technology reached the point where machines were also capable of functioning as a partial surrogate for man's intellect, and it became possible to conceive of the machine as a replacement for man in the areas of information processing, evaluation, decision-making, and process control. This technological advance made it practical to think of machines not just as an aid to man but also as a substitute for men.

At the theoretical level, writers such as Wiener, Von Neumann, and Adler examined the implications of cybernetics and "thinking machines." In the field of basic research, investigators such as Fitts, Kidd, Birmingham, and Mackworth undertook basic studies of the respective roles of men and machines in complex systems and formulated principles for the allocation of tasks to men and machines in the system design process. The applied fields of human factors and human engineering received great impetus from this concern for providing designers with practical man-machine allocation guidelines, and many of the now standard human factors reference works (McCormick, Woodson and Conover, Sinaiko, Gagne, et al.) date from this period.

Despite the attention devoted to the principles of man-machine system design in the 1950's and 1960's certain conceptual and practical difficulties remained. Partly they were lodged in the inherent complexity of the systems developed during that period. There was an almost infinite number of permutations and combinations of man and machine tasks available to system engineers, a variety which precluded systematic empirical comparison of alternative designs at any but the most global levels. Without a detailed body of empirical evidence, the essence of the decision on man-machine task allocation remained engineering judgment. Relying upon his experience in
system design and fragmentary research evidence, the engineer pursued a strategy of judgment, "best guess," and successive approximations.

Typically, system development in the 1950's and 1960's began with specification of objectives and system performance requirements. Through an iterative process, these requirements were expanded to greater and greater levels of detail to form a prescriptive statement of what each functional component of the system had to do. Drawing upon an increasingly rich pool of technological resources, the engineer then designed an equipment complex to meet these requirements as fully as possible. Where technology was inadequate or where by design philosophy it was considered desirable to preserve man's participation, system functions were assigned to human operators. To support these decisions, system simulations and operational tests were performed; and, where necessary, redesign of equipment was carried out. Optimal human performance was usually provided for by operator selection standards, training, and careful man-machine interface design. Man, because of his great inherent performance capability and his adaptability, entered the system primarily as a means of augmenting and aiding the machine (i.e., as a form of compensation) and only secondarily as a controller or manager of the machine or as a full partner in the system.

More recent design philosophy has tended to view the question of task allocation not as a matter of man or machine but as one of man and machine. That is, human operators and automata are not considered as alternative resources to be traded off during the design process but as elements to be blended in a symbiosis. The basis for an enlightened decision on how to marshal these resources effectively is an accurate characterization of man and machine capabilities. Each process or task in the operation of the system is examined in terms of the performance capabilities required for its accomplishment. If these capability requirements best match the characteristics of machines, the task is automated. If the capability requirements best match human characteristics, the task is assigned to man. If the task falls within the performance domains of both man and machine, the designer can safely opt for either.

For this approach to work effectively, it is necessary to have a comprehensive catalog of man and machine performance characteristics and some form of standardization of the decision process. Two recent and notable
attempts to provide such an orderly basis for man-machine allocation decisions are the AFSC Design Handbook series (especially DH 1-3, Personnel Subsystems) and the comprehensive study by Serendipity Associates, A Descriptive Model for Determining Optimal Human Performance in Systems (Serendipity, 1966). Despite the value of these two documents as data sources to support judgments of man-machine allocation, they suffer from a major deficiency. The procedure for applying the data to specific design problems is not precisely defined and standardized. As a result, there is considerable latitude for interpretation and selectivity in using the data to formulate decisions. Thus, while the body of information available to the designer has been enlarged and systematically arranged in these documents, the application of the information is still subject to the vagaries of individual judgment. The methodology developed in the AATMS study and described in this report is an attempt to place man-machine allocation on a more objective basis and to provide a systematic decision-making procedure.

2.3 REVIEW OF AVAILABLE METHODOLOGY

The field of system engineering provides a classic approach to the problem of man-machine task allocation. Typically, the systems analyst begins with a statement of design principles or general desiderata which are to serve as criteria for making individual task allocation decisions. These criterion statements are of diverse origins, but most commonly they are derived from some characterization of an "ideal" system or from engineering and technological considerations. By a process of logical analysis, the criteria are applied to the problem at hand; and, depending upon the analyst's skill and the quality of his judgment, a more or less coherent scheme of man-machine allocation emerges. Two examples will serve to illustrate the method.

In 1959 the FAA conducted a project known as Data Processing Central, which proposed the following guidelines for automation of ATC functions (FAA BRD, 1959).

- Automate routine bookkeeping and coordination functions.
- Automate data display (including updating and tracking).
- Unburden the controller by automating tasks not directly related to decision-making and control.
- Use, computers to aid planning and prediction.
- Use computers to aid control of terminal area traffic flow.
- Use computers to aid in the consolidation and integration of flight plan and performance data.

Ten years later, the Autonetics Division of North American Rockwell conducted a similar study of automation applications in air traffic control (Autonetics, 1969). This study outlined the following criteria for manmachine task allocation.

- Ease of Automation - This is a function of computer/software technology and the inherent capabilities of computers.
- Routine Digital Tasks - Computers should be used for tasks involving computation, data handiing, parameter sorting, display generation, etc.
- Human Judgment - Human control is desired where judgments or complex decisions must be made.
- Computer Capacity - Retain numan control if computer capacity required for the task tends to be large.
- System Interfaces - Computers should be used to exchange information with automated systems which interface with the ATC system (e.g., autopilots, weather data computers).
- Unburdening Manual Operations - Computer aiding of manual tasks should be used, especially for display, data storage, simple comparisons, etc.

It is evident that the two sets of criteria are much alike, being made up of a mixture of system engineering principles, technological concerns, and design objectives. Both lists also make reference to the concept of unburdening the controller by relieving him of routine manual chores.

While there can be no quarrel with these criteria as statements of ideal system features, they do seem inadequate on practical grounds. How, specifically, are these criteria to be applied? Are they to be given equal weight, or are some more important than others? How is one to determine the degree to which specific designs meet these criteria? It is obvious that man-machine task allocation by this method is more of an art than a science and that two different experts, starting from the same premises, might well reach contradictory conclusions. Even a cursory review of the studies of ATC automation conducted in the past few years bears this out, and it is highly probable that the disputes which surround automation in air traffic control stem not from the criteria themselves but from a lack of agreement on how to interpret and apply them.

An alternative to the system engineering approach can be found in the field of human factors, where there is voluminous literature pertaining to man's performance capabilities. During the initial phase of this study a review was made of this research, and a compilation of the major findings was prepared. Primarily, they consist of comparative statements about men and machines and characterizations of human performance of various types of tasks. Cast in the form of criterial statements, this information could be used as the basis for allocating tasks to men or machines.

In effect, this is the same as the system engineering approach, except that the grounds for task allocation are human performance capabilities rather than system engineering and design principles. That is, the allocation decision is still a matter of judgment and interpretation, and all that has been accomplished is a substitution of one type of justification for another. The success or failure of either approach rests solely on the quality of the criteria used and the astuteness of the analyst's judgment in applying them. In fact, since there is so little to choose between the two methods, a preferable course would be to combine the two types of criteria and allocate man-machine tasks on the basis of both.

A method for systematizing and objectifying the decision-making process can be found in the field of psychometrics. The general procedure consists of stating the elements of a decision as a series of questions which can be answered by selecting from a finite, and usually small, set of standard responses. Typically, the responses are ordered to form steps along a continuum, such as Agree-Disagree or Always-Never. Familiar examples of psychometric techniques are the procedures used by public opinion pollsters and the Cooper-Harper rating system used in the aerospace industry to evaluate controls and displays, vehicle handing qualities, and the like.

A more sophisticated and sensitive psychometric technique is that of ratio scaling (or subjective magnitude estimation) developed by the late S. S. Stevens. In a series of experiments Stevens demonstrated that sensory qualities, psychophysical phenomena, and even purely social judgments can be translated into magnitudes. In the psychophysical field Stevens concluded that the basic law is a power function of the form:

$$
\psi=k \phi^{n}
$$

where $\quad \psi=$ subjective magnitude
$\phi=$ physical magnitude
$\boldsymbol{n}=$ exponent, derived from the modality or continuum used
$k=$ constant, depending on the unit of measurement

His work suggests that the power function relationship pertains between almost any physical quantity and subjective judgments of that quantity.

Further, in areas where there is no counterpart physical continuum, i.e., where the stimuli can be measured only on a nominal (judgmental) scale, the power law cannot be confirmed directly but still appears to be operative. This is explained by Stevens as follows:
"For both kinds of continua, those based on metric stimuli and those based on nonmetric stimuli, there is a constant relation between the scale erected by direct judgment and the scale derived from a unitizing of variability or confusion. Whether the stimuli are measurable on ratio scales or only on nominal scales, the judgmental scale based on units of variability is approximately proportional to the logarithm of the scale constructed by one or another of the direct scaling methods. The extensive invariance of this logarıthmic relation attests to a principle known throughout all of science--namely, error or variability tends to be relative: the size of the error grows with magnitude. The principle finds expression under many phrasings: the standard deviation increases with the mean; the coefficient of variation remains constant; the signal-to-noise ratio stays put; accuracies are statable as one part in so many. The emergence of a similar canon in the subjective domain, a rule that variability tends to increase in proportion to the apparent magnitude, suggests an essential unity among the principles that govern quantitative relations in widely diverse endeavors. For those who must build their science on one or another consensus of human judgment, a way seems open for effective quantification." (Stevens, 1966)

2.4 APPROACH

The approach adopted for man-machine task allocation in this study was a synthesis of the three major methods outlined in the previous section. Characterizations of man and machine performance, drawn from the two fields of systems engineering and human factors, were used as task allocation criteria. The procedure for applying these criteria in reaching an allocation decision was a modified form of the Stevens magnitude estimation technique. The objective was to create an algorithm for the assignment of tasks either to a human operator or a computer.

The approach rests on two major assumptions. First, it was assumed that the operation of an ATM system could be described as a finite series of tasks and that each task could be defined in terms of specific performance capabilities necessary to its accomplishment. Given a catalog of performance capabilities of man and machine resources, allocation thus became a question of determining which resource was best suited for the task. In other words, the performance-requirements inherent in the task determine the suitability of the task to manual or automated means of performance.

The second assumption was that man and machine performance characteristics could be arrayed on a continuum, with uniquely human performance at one extreme and uniquely machine performance at the other. Description of a task in terms of the type of performance required allowed the task to be placed at some position along this continuum. Since this position could be described quantitatively, tasks could be compared to each other to determine their relative automatability.

Note that the intent was to obtain an index of relative not absolute automatability. There was no attempt to ascertain that such and such tasks should or must be assigned to machines. Rather, the intent was to determine the order in which tasks should be considered for automation, i.e., to obtain a numerical index of automation priority.

The Stevens ratio scaling technique was adopted because it is conceptually simple and relatively easy for individual raters to follow as a decision rule. Also, because the technique permits each case (i.e., task) to be compared with each of the others, the possibility of ambiguous or equivocal outcomes is greatly reduced. In its classic application, ratio
scaling is used to obtain a relationship between the physical and psychological dimensions of a series of events (e.g., intensity of hues or loudness of sound). Obviously, man-machine task allocation is not such a case because there is no overt, physical dimension of the task with which to correlate subjective magnitude estimates. However, the later work by Stevens in the area of purely judgmental ratings, of which the passage cited earlier is typical, demonstrated the validity of subjective ratings for which there are no physical coordinates at all (e.g., the "esthetic attractiveness" of hues or "annoyance" of sound). Thus, the selection of the Stevens method was predicated upon the hypothesis that individual judges had (or could, with appropriate instructions, acquire) an internal scale of values relating to task performance requirements. Further, it was hypothesized that such a scale could be used by raters as a yardstick to produce reliable quantitative judgments about the amenability of tasks to performance by human or machine resources.

Man-machine task allocation is a complex judgnent, involving an interplay of several factors. Rather than ask the raters to combine all these factors in a single, global judgment, it was decided to construct multiple rating scales which, by statistical manipulation, could be aggregated to form a unidimensional automation index. This procedure offered several advantages. First, it facilitated more precise discriminations by the raters by allowing them to concentrate on one aspect of the task at a time. Second, it promoted greater factorial purity among the constituents of the automation index; variations of raters (either individually or collectively) across rating dimensions could be more easily isolated and analyzed.

Another important reason for using multiple scales was that rater bias could thus be minimized. The question of automation, particularly as it relates to air traffic control, is controversial. Consequently, it did not seem advisable to ask raters to score tasks directly as to their automatability because this would elicit (and perhaps reinforce) whatever bias the raters might have. Ratings of greater objectivity could be obtained by disassembling the raters' decision into a series of separate component judgments.

A final reason for preferring multiple-scale ratings related to the subject of the ratings themselves, i.e., man-machine performance capabilities.

Page 2.4-3

It was asserted earlier in this chapter that the concept of man vs. machine is misleading. It is overly simplistic to perceive task allocation as some sort of competition between humans and automata. A more accurate view is to think in terms of performance capabilities which are shared to some degree by man and machine but which may be manifested in different ways. Thus, by seeking rater judgments on a series of particulate aspects of the task and by casting the question in terms of the type of performance required (rather than the type of resource to be assigned), it was believed that more pertinent and valid judgments could be obtained.

The particulars of the methodology and the procedures by which ratings were obtained and analyzed are described in Chapter 3. The results of the ratings, man-machine task allocations, and the grouping of tasks in recommended levels of automation are presented in detail in Chapter 4 and in summary form in the following section.

2.5 SUMMARY OF RESULTS

The AATMS function and task analysis proved to be an effective device to describe air traffic control activities generically for the purpose of man-machine allocation. The use of task performance capabilities as the basis for rater judgments, which were expressed by the Stevens ratio scaling method, resulted in a quantitative data pool that could be manipulated mathematically to produce a ranking of tasks according to their relative automatability. This ranking, designated as the Automation Index (AI) was both highly discriminative and statistically reliable, i.e., the 265 tasks were ordered into 176 discrete ranks and the intercorrelation of rater judgments had a reliability coefficient of 0.822 .

As an external check on the validity of the ranking by Automation Index, the relative placement of tasks was compared with the state of automation of equivalent tasks in the present-day air traffic control system. Very close agreement was found. Of the 22 generic tasks which could be unequivocally associated with tasks in the present system and which are automated now, 20 were also adjudged suitable for automation according to the Automation Index.

The array of tasks ranked by Automation Index was subdivided, on statistical grounds, into five incremental levels of system automation. Examination of the tasks grouped at each automation level revealed that there were common characteristics which could be used to describe the progressive automation of the system. These shared characteristics showed both an internal consistency within levels and a logical relationship between levels, lending further credence to the validity of methodology of ranking tasks by Automation Index. The following is a summary of the five incremental levels of automation which resulted.

```
Level I - Automation of Computational Aids
Tasks allocated to machines at the lowest order of
automation are those involving repetitive computation
and routine data processing, primarily in the areas
of active control of aircraft (surveillance and
vectoring) and maintenance of the system data base.
```


Level II - Automation of Aids to Decision Making

Automated resources are assigned to tasks such as detection of flight plan deviations and conflicts and formulation of possible solutions. Machines are also assigned to more sophisticated data processing tasks. Thus, the machine begins to function as a means of alerting man to the need for a decision and of providing him with data to assist his decision making.

Level III - Automation of Decision Making
At this level many decision-making tasks, particularly those of a routine and repetitive nature, are assigned to machines. Level III is also characterized by essentially complete automation of records keeping and maintenance of the operational data base.

Level IV - Automation of Communications

At level IV the machine replaces man in air-ground communication loop for routine relay of information, e.g., vectors, clearances, and flight advisories. Man is still assigned responsibility for communication of a special or emergency nature. Thus, the system passes from voice communication to two-way data link for normal modes of operation. At this level, virtually all strategic planning and regulation of traffic flow is also delegated to automated resources.

Leve1 V - Full Automation

This level represents a hypothetical system in which man has no direct responsibility for regulation and control of air traffic. All planning, all surveillance, all intervention, and all communication have been automated. Man's role has become that of a system monitor and manager. Thus, man does not control aircraft; he controls a complex of automated resources which, in turn, controls aircraft.

3.0 METHODOLOGY

3.1 TASK DESCRIPTIONS

During the initial phases of the study, an extensive analysis was made of air traffic control functions. This analysis, which was performed at three successive levels of detail, resulted in the identification and description of a total of 265 tasks, grouped into 17 basic ATC functions. The task analysis and an account of how it was performed are presented in Volume II of this report.

The major items of information which make up the task descriptions are:

- Task title
- Identification of the parent subfunction and function
- Description of the purpose and circumstances of task performance
- Task information inputs and origins
- Task information outputs and destinations
- Decisions and actions (subprocesses of the task)

This compilation constituted the data base from which man-machine performance requirements for each task were to be identified and classified.

An important feature of the task analysis is its generic nature. Functions, subfunctions, and tasks are described in terms which were not specific to the present ATC system or to future system concepts, and there is no predisposition toward any particular form of implementation. For the purposes of task allocation, this generic approach to system description was absolutely essential to assure that assignments to man or machine resources should be both unbiased by present system design and unencumbered by equipment constraints.

3.2 PERFORMANCE CAPABILITIES

At the outset of the study a review was made of the research literature on man-machine performance capabilities. The result of this survey was a list of approximately 200 citations, grouped under seven basic categories of performance. (See Appendix A.) This pool of information was used to construct generalized scales of performance characteristics for evaluating man-machine task assignments.

The use of performance characteristics of man and machine as scalar dimensions for task allocation was suggested, in part, by the findings of the literature review. Several of the source documents described man-machine performance in a series of comparative statements, such as "man is flexible and adaptable; the machine is fixed and deterministic," or "the machine is a quantitative processor; man is a qualitative assessor." While antithetical statements such as these serve to clarify the distinctions between man and machines, they tend to overlook the fact that men and machines share some performance attributes and that there are subtle shades in this overlap. Pursuing this line of reasoning one step further leads to the conclusion that the performance descriptions found in the literature should not be considered as dichotomous, either-or propositions but as eviderice that performance capability is a continuum with man-like characteristics at one pole and machine-like characteristics at the other. If so, then it is possible to construct a series of dimensions, each describing some aspect of man-machine performance, and to express the performance required in any given circumstance as some proportion of man and machine qualities.

The development of these scaling dimensions was a three-step process. First was the selection of the dimensions to be used. Despite differences in terminology, the literature suggests that man and machine performance capabilities can be grouped in seven major categories:

- Monitoring
- Sensing
- Information Processing
- Interpreting
- Decision Making
- Storing and Retrieving Information
- Responding

While these categories are not mutually exclusive in any absolute sense, there is sufficient agreement among the source documents reviewed to conclude that they do represent distinctly different types of performance capability.

Therefore, the first step was to analyze each of these performance categories to see if they were relevant to air traffic control tasks. It was concluded that all types of performance were involved to some degree, but that responding should be excluded on the grounds that it was meansoriented. Response capability tends to be highly system-specific. That is, the type of response required to carry out tasks and the method by which response is made are determined by system mechanization and equipment characteristics. In one ATC system the response required for a given task might be to make a written entry; in another it might be to operate a keyboard or to speak into a voice relay; in still another the appropriate response might be to transfer data from buffer to storage. Since the study was intended to be concept-free and hardware-independent and since the task descriptions to be used in man-machine allocation were generic, there seemed to be no reasonable basis for judging just what the response requirements might be. For these reasons, it was decided to limit the task performance dimensions to the first six listed above.

The next step was to consolidate the various assertions found in the literature into a rather small number of essential propositions about the characteristics of man and machine performance in each of the six capability categories. Condensation was necessary for two reasons - first, to eliminate redundancy among the source documents; second, to limit the number of criterion statements to manageable proportions. Thus, each performance dimension was reduced to a series of axioms, such as "machines excel at monitoring which requires continuous attention or detection of random, infrequent events; in the same situation man is easily distracted and unreliable."

Note that the differentiation between man and machine was not made among performance dimensions but within each dimension. Thus, there was no assertion that man or machine is superior in any performance capability. Quite the contrary, the fundamental proposition was that both man and machine have all of the six performance capabilities. However, when man or machine exercises any given capability, the performance has such and such characteristics.

The final step was to simplify the axioms even further by reducing them to unipolar statements. Thus, where the statement had been "Machines have such and such characteristics, and men have the opposite," it was abbreviated to "Machines have such and such characteristics." The result was to compress all of the man-machine characteristics within each performance dimension into a single continuum, with one end point defined explicitly and the other inferentially. Table 3.2-1 is a complete listing of the six performance dimensions, with definitions, examples, and characterizations of resource characteristics.

Note that in Table 3.2-1 the machine end of the performance scale is not explicitly identified as such. It is simply called "Required Resource Characteristics." This was done to suppress any bias which the judges might have about automation or about assigning any particular type of task to men or machines. The disguise is very thin, and even the briefest reflection about the meaning of the required resource characteristics would reveal that the type of resource called for is a machine. However, it was felt advisable not to direct undue attention to the question of automated resources so that the judges would be encouraged to base their decisions about task allocation on the type of capability required not the source of that capability.

Note also that all the resource characteristics are positive attributes. Each statement identifies a type of task performance that machines do well. Negative aspects of machine performance (and positive aspects of human performance) lie at the opposite end of the scale and are identified only by inference. Thus, the decision to assign a task to a machine would be based on positive reasons, i.e., the type of performance called for by the task is a property which machines have. This represents a cautious

```
MONITORING
    To maintain a state of readiness or preparation for receipt of
inputs
Examples Required Resource Characteristics
Search Monitoring of infrequent events
Surveillance High reliability in detecting signals
Vigilance Monitoring specific physical energies
Watch-keeping Continuous attention
    Monitoring scheduled or predictable events
    Monitoring of long-duration events
```


SENSING

```
To perceive external stimuli, to recognize a change of external state, to acquire data from the environment
Examples Required Resource Characteristics
Perception Sensing specific physical energeies
Signal Detection Sensing the same stimulus frequently
Signal Recognition Sensing several similar stimuli simultaneously
Discrimination Simultaneous multichannel sensing
Recognition of Discrete Sensing quantitative values
Change
High sensitivity
Recognition of Dynamic Sensing over long distances
Change
INFORMATION PROCESSING
To transform, to organize, to break down, to combine, to operate on input data or signals
Examples Required Resource Characteristics
Encoding/Decoding Numerical computation
Sorting High volume and/or speed of transactions
Filtering Simple processing rules or specific programs
```

Table 3.2-1 Classification of Performance Capabilities (Cont'd.)

INFORMATION PROCESSING (Cont'd.)	
Examples	Required Resource Characteristics
Ordering	Parallel or multichannel operations
Merging	Repetitive operations
Analysis	High accuracy or precision
Computation	
INTERPRETING	
To construe, to derive, to translate, to assign meaning to data or signals	
Examples	Required Resource Characteristics
Pattern Recognition Interpolation	Assigning items to a large inclusive class by specific rules
Extrapolation	Assigning a narrow range of meanings to inputs
Prediction	Estimation of rate of change, acceleration, or higher order derivatives
Association Classification	Consideration of specific, predictable or unambiguous inputs
	A minimum number of errors due to expectation or cognitive set
DECISION MAKING	
To select among alternatives, to determine a course of action, to assess the validity of a proposition	
Examples	Required Resource Characteristics
Hypothesis Formulation	Dependence upon complex procedures or operations
Induction/Inference Deduction	A large number of differentiations or integraiions
Probability/Contingency Estimation	Deductive reasoning without reference to context Prediction based on variables whose nature and
Identification and Comparison of Alternatives	weightings are known in advance Selection among well defined alternatives
Comparison with Standards or Criteria Selection/choice	Invariant decision-making logic Short time lags between scheduled events

Table 3.2-1 Classification of Performance Capabilities (Cont'd)

To retain or to remain aware of information and, conversely, to recall or to bring forth previously acquired information	
Examples	Required Resource Characteristics
Short-term Memory	Long-term storage with total recall
Long-term Memory Total Retrieval/Recall	Rapid storage (ingestion) of large amounts of data
Selective Retrieval/ Recall	Infallible memory with the precise source of data accurately tagged
Purging	High speed and/or frequent memory search
	Short-term storage and retrieval of large amounts of data
	Multichannel storage or retrieval
	Large buffer (immediate memory) capacity
	Storing of coded or numerical data
	Rapid and/or complete purging (erasure) of stored data

approach to automation in that the construction of the scale encourages raters to allocate to machines only those tasks for which machines are well suited.

It could be argued that reduction of the complex question of manmachine performance capability to a series of rather brief axioms is a vast oversimplification. Perhaps so, but bear in mind that the purpose of the undertaking was to develop scaling dimensions for use as criteria in man-machine task allocation. The intent was not to force a mechanistic decision on the judges but to guide their thinking along certain lines so as to elicit a quantitative expression of the relative ability of men and machines to perform air traffic control tasks. Viewed in this way the numbers of criteria is considerably larger than usual. Each task is ratable upon six dimensions, and within each dimension there are between five and nine aspects of performance to be considered. Taken together, this gave the rater forty potential factors to take into account.

3.3 MAN-MACHINE PERFORMANCE RATING

The task descriptions and the performance capability scales constituted the essential elements for man-machine allocation. Arraying these ingredients in a two-dimensional matrix, where one dimension was composed of 265 tasks and the other of six performance capabilities, provided 1590 cells. Theoretically, each cell was a possible decision point for task allocation. In fact, however, the number of operative cells was considerably smaller since not all performance capabilities were relevant for all tasks.

The procedure for elimination of the irrelevant task-capability conjunctions was to submit the question to a panel of five experienced human factors specialists. Each made an independent review of all tasks against the six performance capabilities and presented his judgment of the relevant combinations. Comparison of the five sets of judgments indicated that for 1208 of the 1590 cells in the task-capability matrix (about 76%) there was consensus, which was defined as agreement of at least four judges that a given performance capability was or was not relevant to the task. This left 382 cases where there was a split 3-2 vote for or against. In the interest of preserving as many data points as possible, it was decided to retain all but those cells where four or five of the judges agreed that the performance capability was not relevant to the task. In other words, if at least two judges thought that a given performance capability was relevant to the task, the cell was retained for man-machine allocation rating. Table $3.3-1$ is a summary of the judges' votes and the disposition made.

Table 3.3-1 Summary of Judgments on Relevance of Performance Capabilities to Tasks

	Number of Votes for Relevance					
	5	4	3	2	1	0
Number of Cases	258	130	207	175	273	547
Percentage	16.2	8.2	13.0	11.0	17.2	34.4
Disposition	Retained for Rating				Deleted	

Deletion of the irrelevant cells left a 265×6 matrix with a total of 770 task-capability conjunctions for which man-machine allocation ratings were to be made. Appendix B of this report is a tabulation of the relevant performance capabilities by task.

With this preliminary step completed, it was then possible to proceed with the task ratings themselves. As discussed in Section 3.2 above, performance capability scales had been constructed, with machine-like characteristics arrayed at one end and man-like characteristics at the other. (It will be recalled, however, that only the machine end of the scales had been explicitly defined.) These scales represented six basic dimensions of task performance. The resource characteristics defined for each scale were criterion reference items against which to evaluate tasks for allocation to men or machines. The method for making this evaluation was the Stevens ratio-scaling technique.

The procedure for making man-machine performance ratings involved the following steps for each task.

1. The rater examined the task description to familiarize himself with the functional details.
2. The rater consulted the task-capability matrix which designated the basic capabilities required to perform the task.
3. For each capability relevant to the task, the rater reviewed the criterion statements of resource characteristics. (See Table 3.2-1, Page 3.2-4)
4. The rater made a comparison between the criterion statements and his own estimate of the performance characteristics required for the task.
5. The rater expressed the comparison as a number, whose magnitude indicated the degree of correspondence between the criterion statements and his own estimate of the required performance characteristics.
6. The rater repeated steps 3,4 , and 5 until the task had been rated on all the relevant performance dimensions.

An example may help to clarify the process by which the rater arrived at a judgment. Suppose that for a given task the required performance capabilities were monitoring, sensing, and information processing. Referring
to Table $3.2-1$, the rater would find statements characterizing a resource with each of these capabilities. If the rater felt that the task called for monitoring of infrequent events and continuous attention, he would assign a high number to the monitoring dimension because these are two of the resource attributes listed in the table. If in the case of sensing, however, he determined that none of the attributes listed were appropriate for the task, he would assign a low number for this dimension. If the information processing portion of the task involved numerical computation but the operation was not repetitive and did not require high precision, an intermediate number would be assigned because some of the attributes listed in the table were appropriate and some were not. In each case, the numbers assigned by the rater was a proportionate estimate of the match between what he considered to be the resource attributes required for the task and those of the criterion statements in the performance scale defined in Table 3.2-1.

Note that the rater was not obliged to use any prescribed number of increments nor any fixed size of interval within a scale. Neither was it necessary that he use increments of equal size throughout the scale. The essence of the Stevens method is that the rater be left free to choose scale values which suit his own perception of the continuum. If the rater believed he could make very fine discriminations either throughout the scale or in some portion of it, the technique allowed him to do so. Likewise, if the rater perceived a great difference between two cases, he could select a ratio as large as he liked. For example, if a rater used the numbers 2, 4, and 47 to describe his estimates of three positions along a continuum, he would be saying in effect that the first was only about half as great as the second but that there was only a slight difference between them in comparison with the third, which differed by an order of magnitude. This feature permits judgments of great subtlety and precision, and it is for this reason that the Stevens method is sometimes called free number matching.

The rating procedure had the effect of reducing the question of manmachine task allocation to a series of particulate, quantified judgments about performance capabilities in relation to functional requirements. The rater was not expected to make a global decision about the level of
automation in the system. In fact, he was not expected to make any explicit judgment at all about automation. Instead, he was asked to characterize, task by task along each performance dimension, the type of appropriate resource to be assigned without ever specifically identifying that resource as a man or a machine. By atomizing the task allocation process in this way and by reducing it to a systematic procedure, rater bias and the intrusion of extraneous factors were minimized.

Obtaining the judgments in numerical form served several important purposes. First, it tended to promote objectivity. It also helped to minimize ambiguous judgments. Even more important, all judgments were cast in a common form, which allowed mathematical manipulation and aggregation of estimates within and across raters in order to integrate the individual data points into a comprehensive man-machine allocation scheme.

As a final step before starting the rating procedure, the methodology was subjected to a pre-test. A group of five raters was selected and asked to make ratings on a sample of tasks comprising four of the seventeen generic ATC functions. A brief statistical analysis was made of the same ratings to ascertain whether the technique would produce the expected results. The pre-test showed that the procedure was workable and that the ratings did, in fact, discriminate among tasks along the relevaṇt performance dimensions. The pre-test also suggested some minor modifications of the rating procedure.

The most significant finding was that, despite instructions to the contrary, raters were inclined to use a very narrow numerical scale with only a few increments. Most probably this was attributable to previous exposure to the traditional three-, five-, and seven-point scales where the splitting of scale intervals is discouraged. To overcome this tendency and to encourage the proper application of the Stevens method, it was decided to specify that the raters use a scale of 1 to 99 and that they discriminate among similar cases if at all possible. While this would place a limit on scale values, in that the rater would no longer be free to choose any number to express his estimate, the $1-99$ range was felt to be large enough not to impose any practical constraint on rater choice. (For a further discussion of this point in connection with the actual ratings obtained, see Subsection 3.5.1.)

The pre-test also indicated that in a few cases raters disagreed with the designation of the performance capabilities relevant to the task. Most often, they took a more restricted view of required capabilities than the panel of five judges who had made the original designations. This was not wholly unexpected since the task-capability matrix compiled from the judges' opinions was somewhat overinclusive in that it had left out only those capabilities which had received one or no votes as to their relevance to the task. To allow the raters as wide a latitude of judgment as possible, it was decided to allow them to decline to rate any performance capability they thought irrelevant to the task and, conversely, to include ratings for any task-capability cells which the panel of judges had deleted.

Originally, it had been planned to obtain ratings on all 265 tasks at one time. However, the pre-test showed that such an exercise would be too arduous. Rating all the tasks was estimated to require from three to four days of work, which would introduce the danger of serial position bias if accomplished in one continuous session. For this reason, it was decided to conduct the rating exercise in two sessions, separated by two or three weeks. In the first session, ratings were planned for eight functions, containing a total of 115 tasks. Ratings for the remaining functions (150 tasks) were scheduled for the second session.

3.4 DATA COLLECTION

A group of thirty-two persons, drawn from contractor personnel and representatives from DOT/TSC and FAA/NAFEC, was selected to perform the task allocation ratings. The grounds for selection were that the participant had to have experience in systems engineering, human factors, computer applications, or air traffic control. Contractor personnel who took part in the pre-test and those who had developed the rating instruments were excluded from the pool of raters to avoid contamination of the results. While the group of raters was not a stratified sample, it did include representatives from all the disciplines and occupations considered to have a contribution to make to the question of automation in air traffic control. Table 3.4-1 is a summary of the basic specialties and organizational affiliations of the raters.

Table 3.4-1 Rater Specialties and Organizational Affiliation

Specialty	Affiliation		
	Contractor 2	DOT/TSC	FAA/NAFEC
Systems Engineering	4	5	-
Human Factors	5	1	5
Air Traffic Control	-	-	12
Computer Applications	3	4	4
Total Participants	9	6	17

1 The columns are not additive since some raters had more than one specialty.
2
Contractor personnel included representatives from TRW, The Planar Corporation, and Stanford Research Institute.

A more detailed analysis of the raters' background and experience is presented in Table 3.4-2. Note that several raters had experience in more than one of the basic specialties and that nearly all had taken part either in the design of advanced man-machine systems or in ATC experimental studies. Note also that seven raters had flying experience in either military, air carriers, or general aviation.

Page 3.4-2

Table 3.4-2 Analysis of Rater Background and Experience

* Deleted from the final sample because only partial ratings obtained

Of the thirty-two raters originally selected, five were unable to complete the rating exercise. They participated in the first rating session but, because of other assignments or illness, could not take part in the second. These raters are identified in Table 3.4-2 by an asterisk beside the rater identification number. To avoid complication in the data analysis and interpretation, the five partial sets of ratings were discarded, leaving a final sample size of twenty-seven raters.

Ratings were obtained in two sessions for each organization group (contractor, DOT/TSC, FAA/NAFEC), making a total of six separate administrations. Each session consumed between eight and twelve hours over a two-day period. The reference materials used by the raters consisted of:

- Detailed task descriptions (similar to those presented in Volume II of this report)
- Schematic system flow diagrams
- Performance capability descriptions (See Table 3.2-1)
- A task-capability matrix, with spaces provided for recording the ratings (See Appendix B).

Although assembled as a group for ease of administration, the raters worked independently and did not consult each other for interpretations or assignment of ratings.
A. tabulation of the individual ratings for all tasks is presented in Appendix C of this report.

3.5 DATA ANALYSIS

The man-machine performance ratings constituted a data base with three dimensions: tasks, performance capabilities, and raters. Arraying the data orthogonally along these dimensions produced a matrix with 42,930 cells (265 tasks $\times 6$ performance capabilities $\times 27$ raters). However, about half of the cells were empty because not all the task-capability conjunctions were relevant and so had not been assigned ratings. Deleting the empty cells left a matrix with approximately 21,000 data points (770 taskcapability conjunctions $\times 27$ raters).

The objective of the data analysis was to derive a single ordinal scale of the automatability of air traffic control tasks. In effect, this involved collapsing the matrix from three dimensions to one by aggregating the data across raters and performance capabilities to obtain a measure designated as the "automation index." The index would order ATC tasks according to their relative automatability, i.e., the order in which they were to be considered for transfer from manual to automated resources in AATMS. The desired properties of the automation index were that it produce maximum discriminability among tasks and that it provide a stable (i.e., reliable) indication of the rank position of each task.

Treatment of the data to develop the index of automation involved several major concerns. First there was the general psychometric question of scaling the raters' responses. A related concern was the matter of aggregation, both among raters and across performance dimensions. Another question was that of dealing with idiosyncratic rater responses. It was also necessary to examine the data to determine the influence of rater reliability (both intrarater and interrater) and of group effects related to rater experience and occupational specialty. Finally, there was the need to examine the overall question of the level of confidence which could be attached to the automation index itself. These topics are discussed below in subsections 3.5.1 through 3.5.5. The automation index and its application to determining levels of automation are presented in Chapter 4.

3.5.1 Scaling

For reasons presented in Section 3.3, the raters had been instructed to use a rating scale whose range was 1 to 99 . Since the final ranking of tasks would require a grouping into only about four or five levels, the original scores had a sizeable built-in compression ratio. In effect, the situation had been contrived so as to provide the rater with an opportunity to impose a very high degree of precision in judgment if he was so disposed. Since there was no intent to use the raw ratings in any absolute characterization of the automatability of tasks (or in any algebraic computation), the nominal precision of the raw scale range was only a concession to the self-regard of the raters for purposes of enhancing their cooperation.

In fact, most raters transformed the $1-99$ range to a 20 point scale by using scores divisible by 5 . From a sample of scores assigned by each of 27 raters, 11 raters (about 41\%) used numbers other than multiples of 5. (The expected value would, of course, be 80%.) Given this tendency on the part of the raters and in the absence of a requirement for bigh ranking precision, it was decided to consider the prospect of simplification to a 20-point scale.

The first analytical step was to characterize the distribution function of the ratings by the individual raters. Graphic plots were made of rater scores. Figure 3.5-1 provides examples of the raw score frequency distributions of three raters on a 20 -interval scale. The distribution of raw scores for all raters is given in Appendix D.

Certain response tendencies are apparent in the graphs. Rater 1 , for example, has a clear tendency to operate with a ten-point scale. The overall distribution is skewed to the low side. Rater 11 shows tho sâme. tendency to avoid scores ending in the numeral 5. In his case the distribution is slightly skewed to the left, bi-modal, and inverted: (We shall have occasion to return to Rater 11 in the following section as an example of the effects of various transformations.) Rater 12 presents a distribution rather markedly skewed to the high end. However, here the distribution is uni-modal and without a pronounced numeral selection tendency.

An examination of the raw scores of other raters confirmed that, with the exception of the tendency to prefer certain numbers, no uniform pattern

Page 3.5-3

Task Ratings on Functions 2, 3, 4, 5, 5, 7, 8, 9, 13

Figure 3.5-1 Twenty-Interval Raw Score Distribution for a Sample of Three Raters
of modality or skewness was present. Additional evidence on this matter is presented in capsule form in Table 3.5-1 which contains the raw score mean and standard deviation for all raters. The average standard deviation is 23.6. The difference between the highest and lowest means is 51.8 points, which is very high. One would conclude that there were strong individual-differences effects. However, it is also clear that the problem of heterogeneity of variance does not arise in this set of data.

The picture provided by the distributional analyses led to the tentative conclusion that there might be a problem of individual magnitude preference. In other words, some raters appeared to prefer high numbers, others low numbers, others both high and low but not middle value numbers, and so forth. Since the ratings were based on highly particularistic associations, it was possible to retain the working hypothesis that these tendencies did not necessarily reflect a prejudice in task allocation to either man or machine but that the phenomenon was simply an artifact of the procedure.

The accepted general method for resolving such anomolies is by normalization and standardization of the raw scores (Chronback, 1960, p. 83 ff). Several options were available. The first tried was within-rater normalization (z-score transformation) and standardization to a nine-point scale (i.e., a stanine transformation to avoid negative decimal fractions and to compress the data).

An example of the transformation to normalized standard scores for Rater 11 is presented in Figure 3.5-2. Several characteristics can be noted. First, the gross bi-modality in the raw score distribution has been substantially muted but not completely eliminated. However, the precision or discriminative power of the scores has clearly been impaired because of the complete elimination of extreme scores. (Score intervals 1, 8 and 9 are empty.)

Other tests were made of the discriminative power of the z-stanine transformed scores by a check of the transformed scores against instances of extreme raw scores. For example, Rater 1 had 38 scores in the 1-5 range. In each case, the stanine score was 3 . Rater 1 also had 11 scores between 95-99, which converted to a stanine score of 8 . When the analysis was enlarged to cover a sample of ten raters, the effect was somewhat less

Page 3.5-5

Table 3.5-1 Analysis of Raw Score Distribution for all Raters

Rater	llumber nf Patings	Mean	Standard Deviation
1	770	55.6	31.0
2	768	57.2	27.7
3	730	50.3	32.3
4	710	68.5	28.8
5	648	55.6	30.6
6	767	78.2	19.3
7	770	74.9	18.2
8	770	63.4	28.2
9	764	64.8	23.7
10	770	60.2	28.4
11	770	60.5	20.8
12	770	33.6	22.1
13	770	74.8	18.4
14	770	75.6	19.9
15	765	36.7	16.2
16	769	39.2	19.6
17	770	70.7	21.4
18	768	52.6	24.2
19	770	76.1	27.2
20	770	66.8	19.7
21	770	85.4	19.4
22	770	51.1	27.1
23	770	36.1	22.2
24	770	75.5	21.1
25	770	59.1	28.7
26	761	75.8	22.9
27	501	43.9	23.9

Figue 3.5-6 Mormaized Standard Score Distribution For Rater ? 1
pronounced but more easily tested. Thus, the total number of ratings for all ten raters was 3529 . For a distribution of this size, the normalization process should yield 61 scores of 1 and 61 scores of 9 . The actual frequency of scores of 1 was 60 , but the frequency of scores of 9 was only 14 . This revealed an artifact of the normalization; those raters whose raw scores clustered on the high end of the scale generated transformed scores on the low end of the scale. In other words, the thrust of the original ratings was to some degree reversed by the normalization.

The data were examined in an attempt to counter these problems while retaining the benefits of normalization-standardization. The analysis revealed that each rater had distinct scoring patterns for each performance capability. That is, their scores were consistently high for one capability and low for another. The question then arose as to whether these variations between capabilities were consistent across raters. Table 3.5-2 shows there was a mixture of effects. There was a general tendency to rate interpreting low on the scale. The rankings of the other capabilities appeared to be more evenly distributed; but when the correlation of rank order and capabilities across raters was tested by the Spearman r Method, a value of 0.70 was obtained, which indicated substantial agreement among raters. While not clearly a population stereotype, this effect constituted a response bias that could be ameliorated, thereby allowing retention of the standard score treatment.

The scaling treatment suggested by this analysis was to normalize within each capability for each rater. The resulting z-score could then be standardized and used as such, or it could form the base score for some other type of aggregation.

3.5.2 Aggregation

Any form of algebraic manipulation or transformation of scores instigates the phenomena of regression toward the mean, which represents a potential loss of discriminability. On the other hand, transformation has the advantage of increasing the stability of scores. Thus, the problem could be stated as how to minimize loss of variability (constituting loss in discriminability) while attempting to adduce a summary index for each task by aggregating scores across capabilities and across raters. The

Table 3.5-2 Raw-Score Averages for Each Capability

Capability

Rater	Monitoring	Sensing	Information Processing	Interpreting	Decision Making	Storing/ Retrieving
1	57.8	52.1	59.4	50.8	52.4	59.6
2	42.4	48.6	59.9	47.0	70.4	55.5
3	51.0	49.3	49.2	45.0	56.2	51.7
4	71.8	74.6	65.0	58.2	79.7	69.6
5	67.0	61.7	60.9	51.0	54.3	50.0
6	84.1	68.5	75.1	77.6	84.0	78.3
7	66.2	68.2	67.4	78.9	79.8	80.1
8	63.5	63.2	63.4	53.7	64.7	74.1
9	83.6	72.2	66.3	60.6	56.1	71.0
10	66.6	73.1	59.4	42.4	72.2	64.2
11	66.8	54.6	47.0	64.2	65.4	72.4
12	43.1	40.5	30.4	30.2	34.9	36.9
13	75.5	74.3	74.8	75.3	76.7	72.1
14	75.1	77.3	76.6	77.6	75.2	71.8
15	25.0	26.3	45.2	29.8	40.1	32.6
16	36.8	42.0	41.6	40.4	37.9	35.3
17	71.1	56.7	75.5	69.6	77.6	59.8
18	64.8	63.6	51.8	48.6	56.1	48.4
19	83.1	81.7	77.9	72.2	74.2	77.0
20	67.2	64.3	69.1	65.5	65.2	67.2
21	86.4	80.3	85.2	84.2	86.0	87.6
22	46.3	52.3	52.0	50.2	46.6	56.8
23	19.1	23.9	32.3	22.8	26.4	22.2
24	77.3	74.6	74.0	77.5	77.9	72.6
25	55.9	50.2	62.6	54.1	50.2	73.6
26	74.4	81.2	76.5	75.2	70.1	81.4
27	40.6	36.5	46.1	41.3	42.2	47.9

ancillary problem was how to retain an indicator of the amount of variability between capabilities and between raters that would otherwise disappear by aggregation. The major complication associated with this ancillary question arose from the fact that different tasks were rated on different capabilities and on different numbers of capabilities (i.e., some capabilities were not relevant to some tasks). It will be recalled that six capability designations were used. Of the 265 tasks rated, two were rated on all six capabilities, 17 were rated on five capabilities, 73 were rated on four capabilities, 84 were rated on three capabilities, 40 were rated on two capabilities, and 49 were rated on only one capability.

Confronted with the need to make a trade-off between discriminability and stability, the approach was to seek a method which would allow both objectives to be at least partially met. Three basic choices were available. The first was aggregation on the basis of raw scores. This would have the advantage of retaining all the discriminability inherent in the scores. However, because of the distributional variations of individual rater's scores and the tendency to use different ranges for different performance capabilities, the stability of an aggregate based on raw-score was dubious. In effect, this would have meant a complete sacrifice of stability for discriminability -- clearly an undesirable choice. Nevertheless, it was decided to compute a raw-score aggregate anyway, primarily as a way of assessing the effects of the other two forms of aggregation.

The second choice was the method customarily employed by Stevens in his studies of magnitude estimates. The variability of magnitude estimations in cross-modality matching has been found to grow approximately in proportion to the physical magnitude of stimuli and to produce distributions that are roughly log normal. Consequently, the geometric mean of raw scores for each task would be an appropriate form of aggregation. This method of averaging would also have the advantage that, despite the different ranges of numbers used by different raters, no normalizing of scores would be needed prior to averaging. This was an acceptable and attractive option, and it was decided to employ the geometric mean as one type of aggregation.

The third possible method was transformation of raw scores to standard scores, with the arithmetic mean of the latter used as the aggregate index.

As noted in subsection 3.5.1 above, z-score transformation would have the effect of reducing the variability across capabilities for each conjunction of rater and task. It would also reduce the variability between tasks for each rater and the variability between raters.

Within this basic method there were several options as to the order in which the steps of averaging and transformation to a standard scale were to be taken. One possible technique was to aggregate z-scores across both capabilities and raters, to obtain the mean z-scores and, finally, to transform them to a standard 20 -point scale. A disadvantage of this procedure was that the resultant summary score would have been a whole number, which would automatically create many ties between task rankings and great loss of discrimination in the middle range. The other undesirable effect of this procedure was that the index of variability within tasks (the standard deviation) would not be on the same scale as the summary score, i.e., it would be the standard deviation of the z-scores.

Other available techniques were: (1) average z-scores across capabilities, transform to a standard scale, and average standard scores across raters; (2) average z-scores by capability across raters, transform to a standard scale, and average the standard score across capabilities; or (3) transform directly to the standard scale and average across both capabilities and raters simultaneously. The last procedure appeared best for the following reasons. It would lead to a discriminate index which could legitimately be carried to two decimal places. It would yield a measure of variability that reflected variations across raters in the same scale as the task automation index itself. It would produce a second-order index of variability (in the form of the Standard Error of the Mean) which would compensate for the difference in the number of scores aggregated for each task.

To summarize, three forms of aggregation were selected. The geometric mean of raw scores by task and the arithmetic mean of standard scores by task were the two which offered the most promise. The arithmetic mean of raw scores, while unsatisfactory because of its instability, was also to be used, primarily as a check on the other two.

3.5.3 Idiosyncratic Response

While the instructions to the raters generally suggested a forcedchoice form of response, the raters were offered the options of declining to rate some task-capability conjunctions or, conversely, to provide a rating where none was asked for. In a few cases, raters chose to avail themselves of one or both of these options. In doing so, the rater was imposing a weighting scheme on the scoring.

In all, 770 ratings were called for from each of the 27 raters, making a total of 20,790 expected responses. Of these, 550 were deleted by the raters*, and 130 were inserted on the raters' initiative. For the primary analysis, deletions were simply bypassed, and rater-initiated scores were not included. However, the information implicit in these actions on the part of the expert raters was not discarded. The utilization of this information took two forms. First, the independent actions of the raters were taken as possible symptoms of problems in the rating instrument. If any pattern of idiosyncratic response by raters was discernable from a particular task, it could be inferred that either the original assignment of relevant capabilities was erroneous or that the task description itself was faulty. In other words, deletions and rater-initiated responses were taken as quality control indicators and were used to flag troublesome data items. Second, the idiosyncratic responses were to be used as an ingredient in the index of confidence for each task rating. (See subsection 3.5 .5 below.) It was anticipated that any serious errors in the rating instrument would be revealed by the confidence index. If task items were to show both deviant confidence index values and instances of rater initiative, there would be a clear case for isolating such tasks from the primary analysis.

The rater initiated responses were highly scattered among the 265 tasks. As a whole, additions amounted to less than 1% of the scores and deletions comprised less than 2%. Thus, the impact of these initiatives was nominal with respect to the automation index. The scattering of response was such that only 23 of the 265 tasks were modified in any way by more than two raters.

[^0]The tasks listed below are those with two or more rater-initiated deletions or insertions. The disposition of these items and an explanation of the probable reasons for idiosyncratic responses by raters are presented in Section 4.1 with the discussion of the automation index.

Table 3.5-3 Tasks With Rater-Initiated Deletions or Insertions

Task No.	Title
1.3 .3	Transmit Requested Information Via Telephone
3.1 .2	Specify Aircraft and Pilot Information
4.4 .2	Cancel Flight Plan
6.1 .4	Request Aircraft Identity
6.3 .2	Compute Short-Range Extrapolations
7.1 .4	Compare Intended Time-Position Profiles For Intersec-
	tions in x, y, h, t
7.1 .5	Propose Revised Flight Plan to Correct Long-Term
	Conflicts Among Flight Plans
8.2.4	Transmit Performance Change Message to Pilot
9.1 .1	Determine Identity and ETA of Arriving Aircraft
9.3 .2	Allocate Blocks of Time for Arrivals and Departures
11.1 .2	Determine Requirements for Further Vectoring
11.2 .1	Measure Course and Distance
11.4 .1	Compute Heading Command
11.4 .2	Compute Airspeed Command
11.4 .3	Compute Vertical Speed Command
12.1 .5	Compile Special Response to Request
12.2 .7	Correlate Present Position with Distribution Position
12.3 .1	Determine Endangered Aircraft
13.1 .3	Correlate Aircraft Position With Airspace Structure
14.3 .4	Boundaries
17.7 .3	Retrieve Required Data
17.8 .3	Retrieve Affected Data Base Item
17.11 .1	Retrieve Affected Data Base Item
	Determine Requirement for Preformatted Data Modules

3.5.4 Interrater Reliability and Group Effects

One of the possibilities that had to be considered was that instead of giving their true appraisal of each task, raters had responded to preconceptions arising from their experience or present work. In other words, it seemed possible that various group-affiliation effects could be the source of some consistent bias in the ratings. This possibility was checked by using rater background as the test variable in two analyses of variance.

In the first instance, raters were grouped by organizational affiliation. Three groups were compared: raters from DOT/TSC, from FAA/NAFEC, and from contractor organizations. The results of the analysis of variance are presented in Table 3.5-4.

Table 3.5-4 Analysis of Variance Due to Organizational Affiliation

Organization	No. Raters	Group Mean	F
DOT/TSC	5	64.8	
FAA/NAFEC	15	59.3	0.256
Contractor	7	58.5	

The raw score average of the five raters from DOT/TSC is the highest, 6.3 points higher than the lowest group, contractor personnel. However, all three averages are well within the boundaries of a common population as indicated by the F-ratio of 0.256 . Given the number of groups and the number of raters in each group, an F-ratio of 19.45 or larger is required to reject, at the 5% confidence level, the hypothesis that the sample groups come from the same population.

In the second test, raters were grouped by their occupational specialty. Again, three groups were formed: ATC operations, computer applications, and human factors/systems engineering. The results are set forth in Table 3.5-5.

Table 3.5-5 Analysis of Variance Due to Occupational Specialty

Specialty	No. Raters	Group Mean	F
ATC Operations	12	67.7	
Computer Applications	6	58.8	3.453
Human Factors/Systems	9	50.8	

In this case, a slight trend is apparent in the raw score averages, but.it is far from pronounced enough to be verified by the F-ratio ($F=3.453$ whereas $F_{.05}=19.45$). It is of some interest. to note that raters from a background of computer applications are centered between the two other groups in a situation where those with computer experience might be expected to show a bias toward higher scores, i.e., toward more automation.

In brief, the two analyses revealed no basis for concern that the raters showed prejudicial tendencies in any consistent way in their assignment of task ratings.

A second, and much more troublesome, possibility was that the raters were entirely idiosyncratic in their responses. If such were the case, the validity of the whole rating procedure would be in doubt. The standard test for such a condition is the statistic of interrater reliability, which tests the correlation among raters on an item-by-item (task-by-task) basis. It is somewhat rare to have a body of data involving such a large number of raters. Most reliability tests are predicated on a comparison of just two raters, where standard correlational formula can be used. When more than two raters are involved, it would be possible to compare each rater with each of the others or to compare each rater with the average of the other raters by standard correlational methods. However, either procedure would be both cumbersome and susceptible to ambiguous interpretation. A preferable approach has been developed by Ebel through a modification of a standard Spearman-Brown formula (Guilford, 1956). The process leads to computation of a ratio which is algebraically equivalent to the standard correlation coefficient (r).

The Spearman-Brown (Ebel) coefficient of reliability among the 27 raters was 0.822 . The computation used the standardized mean scores per task for 247 tasks, i.e., the matrix was composed of all tasks which has been rated by all raters. The 18 tasks which had not been rated by all raters were deleted to simplify the calculation. The coefficient 0.822 is well within acceptable limits (e.g., rigorous cut-off at $r<0.600$) and indicates remarkably high agreement among raters. From this test, it can be concluded that the rating procedure was highly reliable.

3.5.5 Confidence of Task Rankings

The automation index for each task was a composite or average score across raters and capability dimensions. Confidence in the task automation index was, therefore, a matter of the variability among the aggregated scores. The basic proposition for confidence analysis was that, if the overall variability were low, it would be possible to attach substantial confidence to the automation index. Conversely, if variability were high, it could be deduced that there was a problem associated with the rating process and that there should be weak confidence in the resulting automation index.

There were two potential sources of variability in the ratings. First, there could be differences of opinion among the raters with respect to the scores assigned for any given performance capability in the task. That is, raters could exhibit either disagreement or consensus along a given capability dimension. The other source of variance lay in the possible disparity among the group scores across the different performance capabilities associated with the task. This disparity, or lack of consistency, would be demonstrated, for example, if the mean ratings. for sensing were low and the mean ratings for information processing were high for a particular task.

For the purpose of analysis, the two sources of variability were designated consensus and consistency. Consensus was a property manifested by raters along a given performance dimension. Consistency was a property of the ratings across performance capabilities. Since both consensus and consistency could be either high or low, it was possible to define four conditions:

1. High confidence (high consensus and high consistency)
2. Medium confidence (high consensus but low consistency)
3. Medium confidence (low consensus but high consistency)
4. Low confidence (low consensus and low consistency)

The strategy for confidence analysis was first to compute the overall variability across raters and capabilities for each task automation index. If the overall variability was low, it was assumed that the ratings exhibited high consensus and high consistency, and so were accorded high confidence. If, on the other hand, the overall variability was high, the automation index was regarded as suspect and subjected to further analysis to isolate the source of variability.

The first step in this analysis was to determine whether the variability lay in the area of low consensus or low consistency or both. There was also a special case to be considered. If the task in question had been rated on only one capability, it was obvious that there could be no variability in consistency and that the problem had to lie in the realm of consensus. Such cases were routed to a subsidiary analytic channel.

The variability associated with those tasks rated on two or more capabilities were broken down by a method based on the conventional analysis of variance. The magnitude of the variance due to interrater differences was compared by direct inspection with the magnitude of the variance due to differential scoring of capabilities. This allowed the suspect tasks to be assigned to one or the other of the medium confidence subsets or to the low confidence category.

After such assignment, the task in question was examined by nonstatistical means to attempt to determine the source of difficulty. The logic was that the high consensus/low consistency cases probably stemmed either from a faulty task analysis (i.e., the task incorporated disparate components which should have been treated as separate tasks) or from an erroneous designation of performance capabilities. The low consensus/ high consistency cases (which included the above mentioned special cases of low consensus on a single dimension) were more challenging. One
possible explanation was that the task description was not sufficiently clear and that raters were confused as to what type of performance attributes were required. Alternatively, it was possible that the task represented a controversial area of automation and that the divergence of opinion denoted the need for special study, (e.g., through man-in-the-loop simulation). The low consensus/low consistency cases were taken to be a frank failure of the rating procedure. The infrequent occurence of the low confidence ratings (10 of 265 tasks, or 3.8%) was, however, encouraging in that it suggested the overall success of the rating procedure.

For all the medium and low confidence task ratings, the procedure was to resolve the problem by restudy of the task descriptions and performance requirements and to make an automation assignment on logical grounds. Most often, the solution was to consider the functional context of the task and to assign the task to an automation level consistent with other associated tasks. The tasks with questionable ratings are identified and discussed in Section 4.1.

3.5.6 Summary of Data Analysis Procedures

The following is a list of the data processing routines and statistical measures employed to develop and test the index of automation, unless otherwise indicated, the term "mean" refers to the arithmetic mean. An asterisk denotes a critical end product, i.e., one of the three forms of the automation index. See also Appendix F for a statement of mathematical definitions and formulae.

1. Computations Based on Raw Scores:
A. Distribution function per rater
B. Overall distribution function
C. Mean and standard deviation per rater
D. Overall mean and standard deviation
E. Mean and standard deviation for capability category per rater
F. Overall mean and standard deviation per capability category
*f. Mean, standard deviation and standard error of the mean per task
*H. Geometric mean per task
2. Transformation of Scores
A. Computation of Z-score matrix based on the standarddeviation per capability per rater
B. Transformation of Z-score matrix to a 20-interval standard scale
C. Compilation of a standard-score matrix
3. Computations Based on Standard Scores
A. Mean and standard deviation per rater
B. One-way analysis of variance for group bias effects
C. Mean per task per rater
D. Spearman-Brown interrater reliability using all taskmeans per rater
*E. Mean, standard deviation and standard error of the mean per task

4.0 LEVELS OF MAN-MACHINE ALLOCATION

4.1 AuTOMATION INDEX

The objective of the rating procedure and the extensive data analysis was to develop a reliable discriminant measure of the ordinal position of air traffic control tasks along a continuum of man-machine performance capability. This measure, designated as the automation index, was intended to provide a way of ranking tasks with respect to the priority of consideration for assignment to automated resources. It has been pointed out earlier, but must be reemphasized, that the automation index is not to be interpreted in an absolute sense. It does not purport to show that tasks should be automated or, conversely, reserved for human performance. Rather, the automation index is a way of identifying the order in which candidate tasks should be examined. Thus, for any level of automation which may be postulated, the automation index helps to isolate from the entire functional gamut those tasks which, in terms of the type of required performance attributes, are most like each other. In short, the automation index is intended to serve not as a substitute for conventional system analysis but as a framework to guide the analytic process.

In the earlier discussion of the strategy for aggregation of individua 1 ratings (subsection 3.5.2), it was suggested that there were three possible methods for deriving the automation index. They were: 1) the arithmetic mean of raw scores, 2) the geometric mean of raw scores, and 3) the arithmetic mean of the converted scores, each on a per task basis. It was also stated that the desirable properties of the automation index were discriminability among tasks and stability (reliability) across raters. Tests of the automation indices developed by each of these methods indicated that the geometric mean provided the best balance of these two properties. Consequently, whenever the term automation index is used hereafter, it refers to the geometric mean of the ratings assigned by all raters for all performance capabilities in a given task, where the geometric mean is defined as the $n^{\text {th }}$ root of the product of n terms.

The discussion which follows addresses itself to three topics. First is a presentation of the automation indices for the 265 generic air traffic control tasks. Next is an examination of the statistical evidence supporting the confidence level of task rankings obtained by the automation index. Finally, there is a brief interpretation of the findings and an explanation of the disposition of certain anomalous cases.

4.1.1 Task Ranking by Automation Index

Computation of the automation index for the 265 tasks produced values with a range of 18.51 to 77.32 , providing nearly a 60 -point scale. The direction of the scale is such that the higher values represent tasks which the raters believed to require the more machine-like performance attributes. The lower values indicate rater opinion that man-like performance is required. Once more, the reader is cautioned that the automation index is to be interpreted only as a relative scale and that no absolute categorization of automatability is to be imputed to the values obtained.

Tables 4.1-1 and 4.1-2 on the following pages provide listings of task automation indices. Table 4.1-1 contains the automation index and ranking for tasks listed serially by function. The same information is given in Table 4.l-2, but with the tasks rearranged by rank order of automation index. In each table the ranking is from highest to lowest automation index value, i.e., from most to least automatable.

Figure 4.1-1, which appears on page 4.1-24, shows the tasks arrayed on an ordinal scale, thereby allowing the reader to see more readily how tasks cluster by automation index. Figure 4.1-1 has been prepared such that it may be folded out alongside Table 4.1-1 or Table 4.1-2 for ease of comparison.

For the reader interested in comparing the automation index based on the geometric mean with those derived from mean raw scores or mean converted scores, see Appendix E.

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS

$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	TITLE	A ${ }^{*}$	RANIK
	FUNCTION 1.0 - PROVIDE FLIGHT PLANNING INFORMATION		
1.1.1	Accept Data Link Request	52.1	83
1.1.2	Accept Telephone Request	40.7	145
1.1 .3	Enter Request into System	42.0	142
1.2.1	Select Preformatted Reply	44.2	131
1.2 .2	Retrieve Information Requested	54.9	67
1.3 .1	Compile Non-Preformatted Response	42.6	139
1.3.2	Display Information Requested	52.1	83
1.3.3	Transmit Requested Information via Telephone	36.7	156
	FUNCTION 2.0 - CONTROL TRAFFIC FLOW		
2.1 .1	Select Terminal or Jurisdiction and Time Period to be Considered	45.6	122
2.1 .2	Determine Effects of Weather on Capacity	47.8	111
2.1 .3	Determine Effects of Airspace Restrictions on Capacity	45.1	125
2.1 .4	Determine Effects of Ground Equipment Capability and Status on Capacity	44.6	128
2.1 .5	Determine Effects of Flight Hazards on Capacity	40.8	144
2.1 .6	Determine Total Effect on Capacity	53.6	75
2.2.1	Determine Jurisdiction/Terminal Demand Due to Commercial Schedules	58.5	47
2.2 .2	Process and Store Reservations	56.2	59
2.2 .3	Determine Jurisdiction/Terminal Demand Due to Reservations	58.4	48
2.2.4	Determine Total Jurisdiction/Terminal Demand	59.7	42
2.3.1	Compare Capacity with Demand	53.6	75
2.3 .2	Determine Origins of Demand in Capacity Overload Situations	49.9	97
2.3 .3	Determine What Number of Aircraft are to be Delayed for What Period of Time	60.2	39
2.3 .4	Determine where delays are to be Absorbed	67.9	34
2.3 .5	Formulate Flow Control Directives	66.5	20

*AI - Automation Index

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK	TITLE	AI	RANK
	FUNCTION 3.0-PREPARE FLIGHT PLAN		
3.1 .1	Specify Desired Destination and Route Information	37.3	155
3.1 .2	Specify Aircraft and Pilot Information	25.5	169
3.1 .3	Specify Type Flight Plan and Special Services Desired	25.7	168
3.2 .1	Obtain Operational, Environmental, and Regulatory Information for Desired Route and Destination	46.2	119
3.2 .2	Determine Modifications Required to Make Preliminary Flight Plan Consistent with Operational, Environmental and Regulatory Information	46.5	117
3.2 .3	Determine Effects of Required Modifications on Flight Intentions	49.4	99
3.3.1	Compile Flight Plan	44.7	127
3.3.2	Check Flight Plan for Internal Consistency	39.8	. 149
3.3 .3	Submit Flight Plan	19.4	175
	FUNCTION 4.0 - PROCESS FLIGHT PLAN		
4.1 .1	Determine Points for Which ETOV's are to be Computed	40.4	146
4.1 .2	Compute ETOV's/ETA	52.3	81
4.2 .1	Compare Flight Plan with Aircraft Capability and Status	39.1	152
4.2.2	Compare Flight Plan with Operational and Environmental Conditions	45.2	124
4.2.3	Probe for Conflicts among Flight Plans	48.8	104
4.2.4	Compare Flight Plan with Flow Control Directives and Guidelines	47.1	114
4.2.5.	Compare Flight Plan with Rules and Procedures	40.3	147
4.2.6	Compare Flight Plan with Flight Progress	44.7	127
4.2.7	Compare Flight Plan with User Class/Pilot Qualifications	32.1	165
4.2.8	Compile List of Discrepancies	37.9	154
4.2 .9	Determine Flight Plan Priority	40.3	147
4.2 .10	Determine Acceptability of Flight Plan	43.9	132
4.2 .11	Identify Flight Plans That Must be Modified as a Result of this Approval	50.4	94

Page 4.1-5

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

$\begin{aligned} & \text { TASK } \\ & \text { NO. } \\ & \hline \end{aligned}$	TITLE	AI	RANK
4.2 .12	Inform Pilot of Flight Plan Approval	24.2	171
4.2 .13	Determine Special Services Required	34.5	159
4.3.1	Determine Changes Required to Make Flight Plan Acceptable	52.7	78
4.3.2	Determine Responsibility to Modify the Flight Plan	40.2	148
4.3.3	Inform Pilot of Unacceptable Flight Plan	22.3	173
4.3.4	Compile Modified Flight Plan	45.7	121
4.4.1	Receive and Enter Pilot's Response	27.3	166
4.4.2	Cancel Flight Plan	18.5	176
4.4 .3	Designate Responsible Jurisdictions	48.0	109
4.4.4	Designate Communication Links between ATM, and Aircraft	43.8	133
5.1 .1	FUNCTION 5.0 - ISSUE CLEARANCES AND CLEARANCE CHANGES Determine if Identification Code Assignment is Required	44.7	127
5.1.2	Compare Flight Progress with Clearance Limit and EFC Time	54.5	70
5.1.3	Determine Pilot Intentions following Missed Approach	39.6	150
5.2.1	Assign Identification Code	56.2	59
5.2.2	Determine Clearance Tolerances	51.4	88
5.2 .3	Determine Clearance Limit	59.2	45
5.2.4	Determine Required Clearance Instructions	55.6	61
5.3 .1	Compile Clearance to be Issued	55.5	62
5.3.2	Transmit Clearance Message	24.4	170
5.3.3	Receive Acknowledgment of Clearance	36.0	157
	FUNCTION 6.0 - MONITOR AIRCRAFT PROGRESS		
6.1 .1	Receive/Enter Correlated Position and Identification	68.6	13
6.1 .2	Receive/Enter Position	71.0	8
6.1 .3	Correlate Position and Identification	53.7	74
6.1 .4	Request Aircraft Identity	34.0	161
6.1 .5	Assign Arbitrary Aircraft Identification	44.3	130

Page 4.1-6

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK	TITLE	AI	RANK
6.2 .1	Initiate Aircraft Actual Time-Position Profile	50.4	94
6.2 .2	Update Aircraft Actual Time-Position Profile	56.3	58
6.3 .1	Derive Rate of Change of Position	55.5	62
6.3.2	Compute Short-Range Extrapolations	77.3	1
6.3.3	Compute Long-Range Extrapolations	76.5	2
6.4 .1	Determine Aircraft Readiness	58.5	47
6.4.2	Detect Aircraft Emergencies	62.8	31
6.4 .3	Determine Nature of Emergency	58.5	47
6.4 .4	Receive and Enter Aircraft Status Changes	50.4	94
6.4 .5	Update Aircraft Starus	43.4	135
6.4 .6	Receive and Enter Reports of Aircraft Capability Changes	49.1	101
6.4 .7	Update Aircraft Capability	50.0	96
	FUNCTION 7.0 - MAINTAIN CONFORMANCE WITH FLIGHT PLAN Specify Time Period to be Checked	46.3	118
7.1.2	Construct Pairs of Flight Plans to be Compared	70.1	9
7.1.3	Select Relevant Portion of Each Pair Member's Intended Time-Position Profile	53.9	72
7.1 .4	Compare Intended Time-Position Profiles for Intersections in $x, y, h \& t$	62.8	31
7.1 .5	Propose Revised Flight Plan to Correct Long-Term Conflicts among Flight Plans	61.5	35
7.2 .1	Determine Aircraft's Intended Present Position	52.3	81
7.2.2	Compute Deviations between Aircraft's Intended and Actual Present Position	73.5	4
7.3.1	Determine Aircraft's Intended Future Positions	59.8	41
7.3 .2	```Compute Short-Range Deviations (in x, y, h) from Flight Plan```	68.6	13
7.3 .3	```Compute Long-Range Deviations (in t) from Flight Plan```	66.9	18
7.4 .1	Compare Deviations with Tolerances	60.8	37
7.4.2	Inform Pilot of Out-of-Tolerance Deviations	23.5	172
7.4 .3	Receive Pilot's Response Concerning Resolution of Out-of-Tolerance Present and/or Long-Range Deviations	42.0	142

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	Title	AI	RAIIK
7.4.4	Develop Flight Plan Revisions to Correct Out-ofTolerance Deviations	53.3	76
	FUNCTION 8.0 - ASSURE SEPARATION OF AIRCRAFT		
8.1 .1	Select Airspace Volume and Time Frame	57.3	53
8.1 .2	Predict Aircraft Paths	65.2	25
8.1 .3	Identify Path Prediction Profiles for the Airspace and Time Frame	66.2	21
8.1 .4	Pair Path Prediction Profiles for Conflict Comparison	65.6	24
8.1 .5	Determine Conflict Probability for Each Pair	71.4	7
8.1 .6	Determine Conflict Imminence for Each Pair	72.4	5
8.1 .7	Determine Action Required	68.8	12
8.1 .8	Monitor for Unexpected Deviations	62.1	33
8.1 .9	Determine if Action Classification has been Updated	52.4	80
8.2 .1	Hypothesize Performance Changes	58.0	50
8.2 .2	Analyze Performance Change for Conflicts	67.6	16
8.2 .3	Format Performance Change Message	54.8	68
8.2 .4	Transmit Performance Change Message to Pilot	42.6	139
8.2 .5	Determine Performance Change Status	49.1	101
	FUNCTION 9.0-CONTROL SPACING OF AIRCRAFT		
9.1 .1	Determine Identity and ETA of Arriving Aircraft	54.9	67
9.1 .2	Determine Identity and ETD of Departing Aircraft	53.7	74
9.1 .3	List Arriving and Departing Aircraft and ETA/ETD	63.3	29
9.2 .1	Determine Airport Capacity		
9.2 .2	Analyze Predicted Schedule for Alternating Periods of Excess Demand and Slack	51.3	89
9.3 .1	Analyze Temporal Distribution of Arrivals and Departures	54.9	67
9.3 .2	Allocate Blocks of Time for Arrivals and Departures	47.3	113
9.4 .1	Compare Predicted Arrival and Departure Times with Runway Schedule	62.1	33
9.4 .2	Change ETA's and ETD's to be Compatible with Runway Schedule	62.6	32
9.5 .1	Select Sequence/Schedule Change to be Implemented	51.2	90

Page 4.1-8

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK No.	TITLE	AI	RAsIK
9.5.2	Hypothesize Performance Change Required to Implement Desired Sequence/Schedule	53.8	73
9.5.3	Check Proposed Performance Change for Predicted Conflict	57.2	54
9.5.4	Assess Control Implications of Performance Required to Implement Sequence/Schedule Change	57.2	54
9.5 .5	Submit Performance Changes within Existing Flight Plan to Clearance Function	26.8	167
9.5 .6	Propose Revised Flight Plan to Implement Sequence/ Schedule Change	42.8	138
9.5.7	Submit Revised Flight Plan for Approval	21.4	174
	FUNCTION 11.0 - PROVIDE AIRCRAFT GUIDANCE		
11.1 .1	Determine Desired Position	58.4	48
11.1 .2	Determine Requirements for Further Vectoring	54.7	69
11.2 .1	Measure Course and Distance	52.4	80
11.2 .2	Compute Time Interval	55.6	61
11.2 .3	Compute Ground Speed	67.9	14
11.2 .4	Compute Altitude Difference	64.0	28
11.3 .1	Compute Airspeed	69.9	11
11.3 .2	Compute Vertical Speed	69.9	11
11.3 .3	Compute Heading	65.8	23
11.4.1	Compute Heading Command	56.7	56
11.4 .2	Compute Airspeed Cormand	56.6	57
11.4 .3	Compute Vertical Speed Command	56.6	57
11.5 .1	Compile Vectoring Instructions	54.0	71
11.5 .2	Transmit Vectoring Instructions to Pilot	41.9	143
11.5 .3	Assess Aircraft Response	55.6	61
	FUNCTION 12.0 - ISSUE FLIGHT ADVISORIES AND INSTRUCTIONS		
12.1 .1	Receive Pilot's Request for Information	45.7	121
12.1.2	Acknowledge Pilot Request for Information	34.4	160
12.1 .3	Select Applicable Preformatted Messages	48.7	105
12.1 .4	Retrieve Information Requested	57.1	55

Page 4.1-9

TABLE 4.1-1. AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK.	TITLE	AI	RAilk
12.1.5	Compile Special Response to Request	42.8	138
12.1 .6	Transmit Preformatted Advisory to Pilot	35.0	158
12.1 .7	Transmit Special Response to Pilot	33.9	162
12.2.1	Evaluate Advisory for Data Content	58.1	49
12.2.2	Determine Aircraft to Which Information Applies	52.0	84
12.2.3	Determine Method of Flight Advisory Distribution	51.0	92
12.2.4	Determine Distribution Position for Each Identified Aircraft	53.1	77
12.2.5	Determine Time of Simultaneous Distribution	51.7	86
12.2.6	Prepare Transmission Schedule	51.1	91
12.2 .7	Correlate Present Position with Distribution Position	46.1	120
12.3.1	Determine Endangered Aircraft	51.5	87
12.3.2	Compile Alert Message	59.9	40
12.3.3	Transmit Warning Advisory to Pilot	32.7	164
12.3.4	Receive Pilot's Response	39.2	151
	FUNCTION 13.0-HANDOFF		
13.1 .1	Correlate Aircraft Position with Jurisdictional Boundaries	45.7	121
13.1.2	Determine Functions to be Transferred	53.7	74
13.1.3	Correlate Aircraft Position with Airspace Structure Boundaries	49.6	98
13.1.4	Receive Pilot's Request for Transfer of Responsibility	44.5	129
13.1 .5	Determine Acceptability to Jurisdictions Involved	55.2	64
13.2.1	Determine if Communication Channel Change is Required	45.2	124
13.2.2	Determine Availability of Appropriate Channels	43.1	137
13.2.3	Designate Channel to be Used	49.3	100
13.3 .1	Transfer Responsibility for Control	36.7	156
13.3 .2	Compile Required Information for Clearance Function	51.2	90
	FUNCTION 14.0 - MAINTAIN SYSTEM RECORDS		
14.1.1	Detect Information Requiring Operational Report	46.8	116
14.1.2	Retrieve Applicable Operational Report Format	49.0	102

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK	TITLE	AI	RANK
14.1 .3	Enter Detected Information	50.8	93
14.1 .4	Determine Necessity for Additional Information	48.9	103
14.1.5	Retrieve Additional Information	49.3	100
14.2 .1	Classify Data Elements	53.6	75
14.2 .2	Assign Appropriate Identifiers	55.4	63
14.2.3	Determine if Data Transform/Reformat is Required	58.9	46
14.2.4	Transform/Reformat Data Element	59.4	43
14.2 .5	Enter Data Element into Storage	66.8	19
14.3.1	Determine if Report is Available	52.5	79
14.3 .2	Retrieve Format	48.5	107
14.3.3	Develop Format	45.5	123
14.3 .4	Retrieve Required Data	53.1	77
14.3 .5	Analyze Data	60.9	36
14.3 .6	Compile Report	59.3	44
	FUNCTION 15.0 - PROVIDE ANCILLARY AND SPECIAL SERVICES		
15.1.1	Compile/update Description of Special Service Required	39.2	151
15.1.2	Monitor Progress of Service	42.4	140
15.2 .1	Determine Requirement for Special Flight Plan Priority	44.3	130
15.2.2	Establish Area of Restriction	44.6	128
15.2 .3	Determine Guidance Service Required	40.7	145
15.2 .4	Determine Special Separation Minima	45.0	126
15.2 .5	Determine Advisories Required	42.3	141
15.2 .6	Determine Necessity for Issuance of NOTAM(s)	39.1	152
	FUNCTION 16.0 PROVIDE EMERGENCY SERVICES		
16.1.1	Determine Adequacy of Emergency Description	50.2	95
16.1.2	Request Additional Required Information	47.6	112
16.1.3	Compile Description of Emergency	46.8	116
16.2 .1	Determine Required Ground Support Assistance	48.6	106
16.2.2	Determine Assistance Required from Other Aircraft	46.1	120

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK	TITLE	AI	RAIIK
16.2 .3	Determine Aircraft to Provide Assistance	56.1	60
16.2 .4	Issue Instructions to Aircraft Providing Assistance	46.1	120
16.2 .5	Determine Required Technical Instructions to Aircraft	52.7	78
in Emergency Situation			
16.2 .6	Develop Emergency Flight Plan	60.6	38
16.2 .7	Determine Requirement for Use of Emergency Communica-	52.2	82
tion Link			
16.2 .8	Inform Pilot of Change to Emergency Frequency Link	38.4	153
16.2 .9	Determine Required Guidance Assistance	51.5	87
16.2 .10	Determine Required Response to Emergency	41.9	143
	FUNCTION 17.0-MAINTAIN SYSTEM CAPABILITY AND		
17.1 .1	STATUS INFORMATION		
17.1 .2	Determine if Weather Observation Report is Required	47.0	115
17.1 .3	Request PIREP	43.3	136
17.1 .4	Receive Supplemental Data:	44.3	130
17.1 .5	Make Weather Observation Report	33.5	163
17.1 .6	Transmit Weather Observation Report	47.9	110
17.1 .7	Receive and Enter Weather Information	47.3	113
17.1 .8	Store Weather Information	43.5	134
17.2 .1	Determine Data Base Item Affected	71.9	6
17.2 .2	Retrieve Affected Data Base Item	48.4	108
17.2 .3	Determine Required Change to the Data Base Item	64.7	27
17.2 .4	Purge Affected Data Base Item	52.7	78
17.2 .5	Format New Data Base Item	44.5	129
17.2 .6	Store Data Base Item	48.4	105
17.3 .1	Determine Data Base Item Affected	65.0	26
17.3 .2	Retrieve Affected Data Base Item	48.4	108
17.3 .3	Determine Required Change to the Data Base Item	64.7	27
17.3 .4	Purge Affected Data Base Item	52.7	78
17.3 .5	Format New Data Base Item	44.5	129
17.3 .6	Store Data Base Item	48.4	108
		65.0	26

Page 4.1-12
TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK			
NO.	TITLE	AI	RAIIK
17.4 .1	Determine Data Base Item Affected	48.4	108
17.4 .2	Retrieve Affected Data Base Item	64.7	27
17.4 .3	Determine Required Change to the Data Base Item	52.7	78
17.4 .4	Purge Affected Data Base Item	44.5	129
17.4 .5	Format New Data Base Item	48.4	108
17.4 .6	Store Data base item	65.0	26
17.5 .1	Determine Data Base Item Affected	48.4	108
17.5 .2	Retrieve Affected Data Base Item	64.7	27
17.5 .3	Determine Required Change to the Data Base Item	52.7	78
17.5 .4	Purge Affected Data base Item	44.5	129
17.5 .5	Format New Data Base Item	48.4	108
17.5 .6	Store Data Base Item	65.0	26
17.6 .1	Determine Data Base Item Affected	48.4	108
17.6 .2	Retrieve Affected Data Base Item	64.7	27
17.6 .3	Determine Required Change to the Data Base Item	52.7	78
17.6 .4	Purge Affected Data Base Item	44.5	129
17.6 .5	Format New Data Base Item	48.4	108
17.6 .6	Store Data Base Item	65.0	26
17.7 .1	Monitor CoMM and NAV Systems for Status Change	55.4	63
17.7 .2	Activate Standby Equipment	51.8	85
17.7 .3	Retrieve Affected Data Base Item	53.6	75
17.7 .4	Format New Data Base Item	51.5	87
17.7 .5	Store Data Base Item	67.8	15
17.8 .1	Monitor Ground Facilities for Status Change	59.2	45
17.8 .2	Activate Standby Equipment	52.0	84
17.8 .3	Retrieve Affected Data base Item	53.6.	75
17.8 .4	Format New Data Base Item	51.5	87
17.8 .5	Store Data Base Item	67.8	15
17.9 .1	Receive and Index User Class Information	134	
17.9 .2	Retrieve Affected Data base Item	57.8	51
17.9 .3	Determine Change REquired	55.1	65
17.9 .4	Purge Affected User Class Data Base Item	46.2	119

TABLE 4.1-1 AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX

RANK*	AI	TASK	TITLE
1	77.3	6.3 .2	
2	76.5	6.3 .3	Compute Short-Range Extrapolations
3	74.0	17.10 .3	Compute Long-Range Extrapolations
4	73.5	7.2 .2	Store Traffic Data Compute Deviations between Aircraft's Intended and Actual Present Position
5	72.4	8.1 .6	Determine Conflict Imminence for Each Pair
6	71.9	17.1 .8	Store Weather Information
7	71.4	8.1 .5	Determine Conflict Probability for Each Pair
8	71.0	6.1 .2	Receive/Enter Position
9	70.1	7.1 .2	Construct Pairs of Flight Plans to be Compared
10	70.0	17.10 .2	Compile ETD's, ETOV's, and ETA's
11	69.9	11.3 .1	Compute Airspeed
11	69.9	11.3 .2	Compute Vertical Speed
12	68.8	8.1 .7	Determine Action Required
13	68.6	6.1 .1	Receive/Enter Correlated Position and Identification
13	68.6	7.3 .2	Compute Short-Range Deviations (in x, y and h) from
14	67.9	11.2 .3	Flight Plan
15	67.8	17.7 .5	Compute Ground Speed
15	67.8	17.8 .5	Store Data Base Item
16	67.6	8.2 .2	Store Data Base Item
17	67.5	17.10 .1	Analyze Performance Change for Conflicts
18	66.9	7.3 .3	Maintain Tallies of Active Flight Plans
19	66.8	14.2 .5	Compute Long-Range Deviations (in t) from Flight Plan
20	66.5	2.3 .5	Formulate Flow Control Directives
21	66.2	8.1 .3	Identify Path Prediction Profiles for the Airspace and
22	66.0	17.9 .6	Time Frame
23	65.8	11.3 .3	Store User Class Data Base Item
24	65.6	8.1 .4	Compute Heading
25	65.2	8.1 .2	Pair Path Prediction Profiles for Conflict Comparison
26	65.0	17.2 .6	Predict Aircraft Paths
26	65.0	17.3 .6	Store Data Base Item
Store Data Base Item			

*The rank order is from most to least automatable.

TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX (cont'd)

RANK	AI	TASK	TITLE
26	65.0	17.4 .6	Store Data Base Item
26	65.0	17.5 .6	Store Data Base Item
26	65.0	17.6 .6	Store Data Base Item
27	64.7	17.2 .2	Retrieve Affected Data Base Item
27	64.7	17.3.2	Retrieve Affected Data Base Item
27	64.7	17.4.2	Retrieve Affected Data Base Item
27	64.7	17.5.2	Retrieve Affected Data Base Item
27	64.7	17.6 .2	Retrieve Affected Data Base Item
28	64.0	11.2 .4	Compute Altitude Difference
29	63.3	9.1 .3	List Arriving and Departing Aircraft and ETA/ETD
30	63.0	17.11 .2	Compile Preformatted Data Modules
31	62.8	6.4.2	Detect Aircraft Emergencies
31	62.8	7.1.4	Compare Intended Time-Position Profiles for Intersections in $X, Y, H, \& T$
32	62.6	9.4.2	Change ETA's and ETD's to be Compatible with Runway Schedule
33	62.1	8.1.8	Monitor for Unexpected Deviations
33	62.1	9.4.1	Compare Predicted Arrival and Departure Times with Runway Schedule
34	61.9	2.3.4	Determine Where Delays are to be Absorbed
35	61.5	7.1 .5	Propose Revised Flight Plan to Correct Long-Term Conflicts Among Flight Plans
36	60.9	14.3 .5	Analyze Data
37	60.8	7.4.1	Compare Deviations with Tolerances
38	60.6	16.2 .6	Develop Emergency Flight Plan
39	60.2	2.3.3	Determine What Number of Aircraft are to be Delayed for What Period of Time
40	59.9	12.3 .2	Compile Alert Message
41	59.8	7.3.1	Determine Aircraft's Intended Future Positions
42	59.7	2.2 .4	Determine Total Jurisdiction/Terminal Demand
43	59.4	14.2 .4	Transform/Reformat Data Element
44	59.3	14.3 .6	Compile Report
45	59.2	5.2.3	Determine Clearance Limit

TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX (cont'd)

RANK	AI	$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	TITLE
45	59.2	17.8.1	Monitor Ground Facilities for Status Change
46	58.9	14.2.3	Determine if Data Transform/Reformat is Required
47	58.5	2.2.1	Determine Jurisdiction/Terminal Demand Due to Commercial Schedules
47	58.5	6.4.1	Determine Aircraft Readiness
47	58.5	6.4.3	Determine Nature of Emergency
48	58.4	2.2 .3	Determine Jurisdiction/Terminal Demand Due to Reservations
48	58.4	11.1 .1	Determine Desired Position
49	58.1	12.2 .1	Evaluate Advisory for Data Content
50	58.0	8.2 .1	Hypothesize Performance Changes
51	57.8	17.9.2	Retrieve Affected Data Base Item
52	57.5	17.11 .1	Determine Requirement for Preformatted Data Modules
53	57.3	8.1 .1	Select Airspace Volume and Time Frame
54	57.2	9.5.3	Check Proposed Performance Change for Predicted Conflict
54	57.2	9.5.4	Assess Control Implications of Performance Required to Implement Sequence/Schedule Change
55	57.1	12.1 .4	Retrieve Information Requested
56	56.7	11.4 .1	Compute Heading Command
57	56.6	11.4.2	Compute Airspeed Command
57	56.6	11.4 .3	Compute Vertical Speed Command
58	56.3	6.2.2	Update Aircraft Actual Time-Position Profile
59	56.2	2.2.2	Process and Store Reservations
59	56.2	5.2 .1	Assign Identification Code
60	56.1	16.2.3	Determine Aircraft to Provide Assistance
61	55.6	5.2 .4	Determine Required Clearance Instructions
61	55.6	11.2 .2	Compute Time Interval
61	55.6	11.5 .3	Assess Aircraft Response
62	55.5	5.3 .1	Compile Clearance to be Issued
62	55.5	6.3 .1	Derive Rate of Change of Position
63	55.4	14.2 .2	Assign Appropriate Identifiers
63	55.4	17.7 .1	Monitor COMM and NAV Systems for Status Change

Page 4.1-17
TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX (cont'd)

RANK	AI	$\begin{aligned} & \hline \text { TASK } \\ & \text { NO. } \end{aligned}$	TITLE
64	55.2	13.1.5	Determine Acceptability to Jurisdictions Involved
65	55.1	17.9.3	Determine Change Required
66	55.0	17.9.5	Format User Class Data Base Item
67	54.9	1.2.2	Retrieve Information Requested
67	54.9	9.1 .1	Determine Identity and ETA of Arriving Aircraft
67	54.9	9.3.1	Analyze Temporal Distribution of Arrivals and Departures
68	54.8	8.2 .3	Format Performance Change Message
69	54.7	11.1 .2	Determine Requirements for Further Vectoring
70	54.5	5.1.2	Compare Flight Progress with Clearance Limit and EFC Time
71	54.0	11.5.1	Compile Vectoring Instructions
72	53.9	7.1.3	Select Relevant Portion of each Pair Member's Intended Time-Position Profile
73	53.8	9.5.2	Hypothesize Performance Change Required to Implement Desired Sequence/Schedule
74	53.7	6.1 .3	Correlate Position and Identification
74	53.7	9.1 .2	Determine Identity and ETD of Departing Aircraft
74	53.7	13.1 .2	Determine Functions to be Transferred
75	53.6	2.1 .6	Determine Total Effect on Capacity
75	53.6	2.3 .1	Compare Capacity with Demand
75	53.6	14.2 .1	Classify Data Elements
75	53.6	17.7.3	Retrieve Affected Data Base Item
75	53.6	17.8.3	Retrieve Affected Data Base Item
76	53.3	7.4.4	Develop Flight Plan Revisions to Correct Out-ofTolerance Deviations
77	53.1	12.2.4	Determine Distribution Position for each Identified Aircraft
77	53.1	14.3.4	Retrieve Required Data
78	52.7	4.3 .1	Determine Changes Required to Make Flight Plan Acceptable
78	52.7	16.2.5	Determine Required Technical Instructions to Aircraft in Emergency Situation
78	52.7	17.2 .3	Determine Required Change to the Data Base Item

TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX (cont'd)

RANK	AI	TASK NO.	TITLE
78	52.7	17.3 .3	Determine Required Change to Data Base Item
78	52.7	17.4 .3	Determine Required Change to Data Base Item
78	52.7	17.5 .3	Determine Required Change to Data Base Item
78	52.7	17.6 .3	Determine Required Change to Data Base Item
79	52.5	14.3 .1	Determine if Report is Available
80	52.4	8.1 .9	Determine if Action Classification has been Updated
80	52.4	11.2 .1	Measure Course ano Distance
81	52.3	4.1 .2	Compute ETOV's/ETA
81	52.3	7.2 .1	Determine Aircraft's Intended Present Position
82	52.2	16.2 .7	Determine Requirement for Use of Emergency
83	52.1	1.1 .1	Communication Link
83	52.1	1.3 .2	Accept Data Link Request
84	52.0	12.2 .2	Display Information Requested
84	52.0	17.8 .2	Activate Standby equipment
85	51.8	17.7 .2	Activate Standby Equipment
86	51.7	12.2 .5	Determine Time of Simultaneous Distribution
87	51.5	12.3 .1	Determine Endangered Aircraft
87	51.5	16.2 .9	Determine Required Guidance Assistance
87	51.5	17.7 .4	Format New Data Base Item
87	51.5	17.8 .4	Format New Data Base Item
88	51.4	5.2 .2	Determine Clearance Tolerances
89	51.3	9.2 .2	Analyze Predicted Schedule for Alternating Periods
90	51.2	9.5 .1	of Excess Demand and Slack
90	51.2	13.3 .2	Select Sequence/Schedule Change to be Implemented
91	51.1	12.2 .6	Prepare Transmission Schedule
92	51.0	12.2 .3	Determine Method of Flight Advisory Distribution
93	50.8	14.1 .3	Enter Detected Information
94	50.4	4.2 .11	Identify Flight Plans that must be Modified as a
94	50.4	6.2 .1	Result of this Approval

TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX (cont'd)

RANK	AI	$\begin{gathered} \text { TASK } \\ \text { NO. } \end{gathered}$	TITLE
94	50.4	6.4.4	Receive and Enter Aircraft Status Changes
95	50.2	16.1 .1	Determine Adequacy of Emergency Description
96	50.0	6.4.7	Update Aircraft Capability
97	49.9	2.3.2	Determine Origins of Demand in Capacity Overload Situations
98	49.6	13.1.3	Correlate Aircraft Position with Airspace Structure Boundaries
99	49.4	3.2.3	Determine Effects of Required Modifications on Flight Intentions
100	49.3	13.2.3	Designate Channel to be Used
100	49.3	14.1 .5	Retrieve Additional Information
101	49.1	6.4 .6	Receive and Enter Reports of Aircraft Capability Changes
101	49.1	8.2.5	Determine Performance Change Status
102	49.0	14.1 .2	Retrieve Applicable Operational Report Format
103	48.9	14.1.4	Determine Necessity for Additional Information
104	48.8	4.2.3	Probe for Conflicts Among Flight Plans
105	48.7	12.1.3	Select Applicable Preformatted Messages
106	48.6	16.2.1	Determine Required Ground Support Assistance
107	48.5	14.3.2	Retrieve Format
108	48.4	17.2.1	Determine Data Base Item Affected
108	48.4	17.2 .5	Format New Data Base Item
108	48.4	17.3 .1	Determine Data Base Item Affected
108	48.4	17.3.5	Format New Data Base Item
108	48.4	17.4.1	Determine Data Base Item Affected
108	48.4	17.4.5	Format New Data Base Item
108	48.4	17.5.1	Determine Data Base Item Affected
108	48.4	17.5 .5	Format New Data Base Item
108	48.4	17.6.1	Determine Data Base Item Affected
108	48.4	17.6 .5	Format New Data Base Item
109	48.0	4.4.3	Designate Responsible Jurisdictions
110	47.9	17.1 .5	Make Weather Observation Report
111	47.8	2.1.2	Determine Effects of Weather on Capacity

table 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY aUtOMATION INDEX (cont'd)

RANK	AI	$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	TITLE
112	47.6	16.1.2	Request Additional Required Information
113	47.3	9.3.2	Allocate Blocks of Time for Arrivals and Departures
113	47.3	17.1.6	Iransmit Weather Observation Report
114	47.1	4.2.4	Compare Flight Plan with Flow Control Directives and Guidel ines
115	47.0	17.1.1	Determine if Weather Observation Report is Required
116	46.8	14.1.1	Detect Information Requiring Operational Report
116	46.8	16.1.3	Compile Description of Emergency
117	46.5	3.2.2	Determine Modifications Required to Make Preliminary Flight Plan Consistent with Operational, Environmental and Regulatory Information
118	46.3	7.1.1	Specify Time Period to be Checked
119	46.2	3.2.1	Obtain Operational, Environmental, and Regulatory Information for Desired Route and Destination
119	46.2	17.9 .4	Purge Affected User Class Data Base Item
120	46.1	12.2 .7	Correlate Present Position with Distribution Position
120	46.1	16.2.2	Determine Assistance Required from Other Aircraft
120	46.1	16.2.4	Issue Instructions to Aircraft Providing Assistance
121	45.7	4.3.4	Compile Modified Flight Plan
121	45.7	12.1 .1	Receive Pilot's Request for Information
121	45.7	13.1 .1	Correlate Aircraft Position with Jurisdictional Boundaries
122	45.6	2.1 .1	Select Terminal or Jurisdiction and Time Period to be Considered
123	45.5	14.3.3	Develop Format
124	45.2	4.2.2	Compare Flight Plan with Operational and Environmental Conditions
124	45.2	13.2.1	Determine if Cormunication Channel Change is Required
125	45:1	2.1 .3	Determine Effects of Airspace Restrictions on Capacity
126	45.0	15.2.4	Determine Special Separation Minima
127	44.7	3.3.1	Compile Flight Plan
127	44.7	4.2 .6	Compare Flight Plan with Flight Progress
127	44.7	5.1 .1	Determine if Identification Code Assignment is Required
128	44.6	2.1 .4	Determine Effects of Ground Equipment Capability and Status on Capability

TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX (cont'd)

RANK	AI	TASK	TITLE
128	44.6	15.2 .2	Establish Area of Restriction
129	44.5	13.1 .4	Receive Pilot's Request for Transfer of Responsibility
129	44.5	17.2 .4	Purge Affected Data Base Item
129	44.5	17.3 .4	Purge Affected Data Base Item
129	44.5	17.4 .4	Purge Affected Data Base Item
129	44.5	17.5 .4	Purge Affected Data Base Item
129	44.5	17.6 .4	Purge Affected Data Base Item
130	44.3	6.1 .5	Assign Arbitrary Aircraft Identification
130	44.3	15.2 .1	Determine Requirement for Special Flight Plan Priority
130	44.3	17.1 .3	Request PIREP
131	44.2	1.2 .1	Select Preformatted Reply
132	43.9	4.2 .10	Determine Acceptability of Flight Plan
133	43.8	4.4 .4	Designate Communication Links Between ATM and Aircraft
134	43.5	17.1 .7	Receive and Enter Weather Information
134	43.5	17.9 .1	Receive and Index User Class Information
135	43.4	6.4 .5	Update Aircraft Status
136	43.3	17.1 .2	Determine if Supplemental Data is Required
137	43.1	13.2 .2	Determine Availability of Appropriate Channels
138	42.8	9.5 .6	Propose Revised Flight Plan to Implement Sequence/ 138
Schedule Change			

TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX (cont'd)

RANK	AI	TASK	TITLE
146	40.4	4.1 .1	Determine Points for Which ETOV's are to be Computed
147	40.3	4.2 .5	Compare Flight Plan with Rules and Procedures
147	40.3	4.2 .9	Determine Flight Plan Priority
148	40.2	4.3 .2	Determine Responsibility to Modify the Flight Plan
149	39.8	3.3 .2	Check Flight Plan for Internal Consistency
150	39.6	5.1 .3	Determine Pilot Intentions Following Missed Approach
151	39.2	12.3 .4	Receive Pilot's Response
151	39.2	15.1 .1	Compile/Update Description of Special Service Required
152	39.1	4.2 .1	Compare Flight Plan with Aircraft Capability and Status
152	39.1	15.2 .6	Determine Necessity for Issuance of NOTAM(s)
153	38.4	16.2 .8	Inform Pilot of Change to Emergency Frequency Link
154	37.9	4.2 .8	Compile List of Discrepancies
155	37.3	3.1 .1	Specify Desired Destination and Route Information
156	36.7	1.3 .3	Transmit Requested Information via Telephone
156	36.7	13.3 .1	Transfer Responsibility for Control
157	36.0	5.3 .3	Receive Acknowledgement of Clearance
158	35.0	12.1 .6	Transmit Preformatted Advisory to Pilot
159	34.5	4.2 .13	Determine Special Services Required
160	34.4	12.1 .2	Acknowledge Pilot Request for Information
161	34.0	6.1 .4	Request Aircraft Identity
162	33.9	12.1 .7	Transmit Special Response to Pilot
163	33.5	17.1 .4	Receive Supplemental Data
164	32.7	12.3 .3	Transmit Warning Advisory to Pilot
165	32.1	4.2 .7	Compare Flight Plan with User Class/Pilot Qualifications
166	27.3	4.4 .1	Receive and Enter Pilot's Response
167	26.8	9.5 .5	Submit Performance Changes within Existing Flight
168	25.7	3.1 .3	Plan to Clearance Function
169	25.5	3.1 .2	Specify Type Flight Plan and Special Services Desired
170	24.4	5.3 .2	Transmit Aircraft and Piloarance Message Information
171	24.2	4.2 .12	Inform Pilot of Flight Pian Approval
172	23.5	7.4 .2	Inform Pilot of Out-of-Tolerance Deviations

Page 4.1-23
TABLE 4.1-2 RANKING OF AIR TRAFFIC CONTROL TASKS BY AUTOMATION INDEX (cont'd)

RANK	AI	$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	TITLE.
173	22.3	4.3.3	Inform Pilot, of Unacceptable Flight Plan
174	21.4	9.5.7	Submit Revised Flight Plan for Approval
175	19.4	3.3 .3	Submit Flight Plan
176	18.5	4.4 .2	Cancel Flight Plan

Page 4.1-24

$$
f
$$

4.1.2 Confidence Analysis

Four indicators of rater score variability could be computed in the present case: the standard deviation (SD) for both the raw score average and the standard score average, and the standard error of the mean (SEM) for both averages. The standard error of the mean is useful in this case because it tends to weight the number of scores in such a way as to help equilibrate the tasks rated on only one performance capability with those rated on two or more such capabilities.

The four indicators were, of course, rather highly correlated among themselves. The procedure was to use the accord between indicators as a form of super-indicator. Thus, if a task had high values in all four indicators, it was specially suspect. High values on a combination of any three indicators made the task somewhat less suspect, and so forth.

Cutoff values were established for each indicator. Table 4.l-3 shows the range and cutoff values for each. The cutoff value was set to take in approximately 10% of the range but was adjusted to reflect gaps in the indicator rank ordering if these occurred near the 10% line. Tasks having indicator values higher than the cutoff value were designated as "problems" according to the combinatorial rule specified above.

Table 4.1-3
Range and Cut Off Value For Four Indicators of 'Confidence'.

Indicator	Range	CUT OFF VALUE
Raw Score Standard Deviation	$15.48-34.02$	29.00
Raw Score Standard Error of Mean	$2.18-6.80$	5.00
Converted Score Standard Deviations	$1.89-5.38$	4.30
Converted Score Standard Error of Mean	$0.27-1.08$	0.70

The following tasks had high scores (low confidence level) on either three or all four of the indicators:
Task No. Title A.I. Rank*
1.3.3 Transmit Requested Information Via Telephone 156
3.3.3 Submit Flight Plan 175
4.2.12 Inform Pilot of Flight Plan Approval 171
5.3.2 Transmit Clearance Message 170
7.4.2 Inform Pilot of Out-of-Tolerances Deviations 172
8.2.4 Transmit Performance Change Message to Pilot 139
9.5.5 Submit Performance Changes within Existing Flight 167
Plan to Clearance Function
9.5.7 Submit Revised Flight Plan for Approval 174
12.3.3 Transmit Warning Advisory to Pilot 164
13.3.1 Transfer Responsibility for Control 156
It is interesting to note some commonalities among these ten tasksin addition to their low confidence assignments. They are all tasks in-volving some form of message initiation; they are all tasks rated on asingle capability (namely, Information Processing); and they are all taskshaving a low Automation Index. Since all these tasks are rated on onlyone capability, the low confidence assignment is clearly due to lack ofagreement among the raters.
The next group is composed of those tasks exhibiting low confidence on two indicators. These were:
Task No. Title A.I. Rank
** 1.3.2 Display Information Requested 83
2.1.1 Select Terminal or Jurisdiction and Time Period 122to be Considered
3.1.1 Specify Desired Destination and Route Information 155
4.1.1 Determine Points for Which ETOV's are to be 146 Computed

[^1]Task No. Title A.I. Rank
4.4.1 Receive and Enter Pilot's Response 166
4.4.2 Cancel Flight Plan 176
5.1 .3 Determine Pilot Intentions Following Missed 150Approach
5.3.3 Receive Acknowledgment of Clearance 157
** 12.1 .2 Acknowledge Pilot Request for Information 160
** 12.1.6 Transmit Preformatted Advisory to Pilot 158
16.1 .2 Request Additional Required Information 112
** 16.2.4 Issue Instructions to Aircraft Providing 120Assistance
** 16.2.8 Inform Pilot of Change to Emergency Frequency 153 Link
** 17.1.6 Transmit Weather Observation Report 113

* $\left\{\begin{array}{ll}17.2 .6 & \text { Store Data Base Item } \\ 17.3 .6 & \text { Store Data Base Item } \\ 17.4 .6 & \text { Store Data Base Item } \\ 17.5 .6 & \text { Store Data Base Item } \\ 17.6 .6 & \text { Store Data Base Item }\end{array}\right\}$
** 17.9.2 Retrieve Affected Data Base Item 51
* 17.10.3 Store Traffic Data 3
The tasks with a double asterisk are of the same type as those considered above: message initiation, single capability (Information Processing), and low confidence due to rater disagreement. The Automation Indices for this set of tasks, while more varied than the first group, still tend to show that these tasks were rejected for automation.(or that there was rater uncertainty about them).
Those tasks with a single asterisk are of a different type. They are rated on a single capability and thus suffer exclusively from rater disagreement; but the capability in question was 'Storage and Retrieval'; and their ranking is low (indicating amenability to automation).
Those eight tasks without asterisks are of a still different type. All were scored on two or more capabilities. In these instances, the variability due to rater disagreement (lack of consensus) could be directly
compared to the variability due to differential scores assigned to different capabilities. The Mean Sum of Squares factor derived from a con-. ventional Analysis of Variance procedure was the figure upon which the comparisons were based.

In five of the eight cases (2.3.5, 4.1.1, 4.4.1, 4.4.2, and 16.1.2), the principal source of variability was rater disagreement. The other three tasks (2.1.1, 5.1.3, and 5.3.3) revealed a predominant lack of consistency in scoring across capabilities.

A final set of 21 tasks were identified as marginal with respect to confidence, in that they showed relatively high variability scores on only one indicator. They were:

Task No.	Title	A.I. Rank
2.1 .5	Determine Effects of Flight Hazards on Capacity	144
2.1 .6	Determine Total Effect on Capacity	75
2.2 .2	Process and Store Reservations	59
3.2.2	Determine Modifications Required to Make Preliminary Flight Plan Consistent with Operational, Environmental and Regulatory Information	117
3.2.3	Determine Effects of Required Modifications on Flight Intentions	99
3.3 .2	Check Flight Plan for Internal Consistency	149
4.2 .8	Compile List of Discrepancies	154
6.1 .4	Request Aircraft Identity	161
6.4 .3	Determine Nature of Emergency	47
** 8.2.3	Format Performance Change Message	68
** 11.2 .4	Compute Altitude Difference	28
** 12.1.7	Transmit Special Response to Pilot	162
13.2.1	Determine if Communication Channel Change is Required	124
* 13.2.3	Designate Channel to be Used	100
** 14.1 .5	Retrieve Additional Information	100
* 14.2 .5	Enter Data Element Into Storage	19
** 14.3.6	Compile Report	44
16.1 .1	Determine Adequacy of Emergency Description	95
16.2 .2	Determine Assistance Required from Other Aircraft	120
** 16.2.10	Determine Required Response to Emergency	143
* 17.9 .6	Store User Class Data Base Item	22

Again, the double asterisk denotes tasks of the 'off' type; a single asterisk indicates tasks scored on one capability (13.2.3 on Decision Making; 14.2.5 and 17.9.6 on Storage and Retrieval). In all these cases, the low confidence was attributable to disagreement between raters. Of the remaining 12 tasks, each of which was scored on more than one capability, analysis revealed that rater disagreement was the dominant factor for eight and that lack of rater consistency across capabilities was the dominant factor for the remaining four (2.1.6, 2.2.2, 4.2.8, and 13.2.1).

In summary, a total of 52 tasks were sequestered because their automation indices were of questionable confidence. Of these, the 10 with the lowest confidence scores plus 13 of the remaining 42 were all of the same type. They were tasks which were rated on a single performance capability (information processing) and which involved some form of message initiation or communication. It was concluded that the explanation probably lay in a defect in the rating procedure.

It will be recalled that seven basic categories of performance were originally identified, but that the category of response was eliminated because it was considered highly system-specific. For the 23 tasks in question here, all of which involved response in their performance, raters were instructed to evaluate them as though they were information processing tasks. Since this designation was somewhat inappropriate, the raters were apparently confused -- with the result that their ratings showed extreme variability, producing automation indices of low confidence. In a way, this result tends to confirm the general validity of the rating procedure. That is, when the raters were confronted with a performance capability designation of dubious appropriateness, they were inclined to make highly variable and unreliable ratings. This conclusion is further strengthened by two additional findings. First, no other group of single performance capability tasks exhibited such a consistent pattern of unreliable ratings. Second, of all the 265 tasks rated, there were just 23 with response as their only performance requirement. All of them were designated (or perhaps misdesignated) as information processing tasks, and all produced ratings of low confidence.

There is no single explanation to account for the low confidence of the remaining 29 of the 52 suspect task ratings. Of these, 9 were rated on a single performance capability (8 on information storage and retrieval and 1 on decision making). Since the only possible source of variance in these scores was interrater disagreement, it is possible that these tasks are controversial as to their automatability. For the other 20 tasks, all of which were rated on two or more capabilities, the dominant factor in their low confidence was interrater disagreement in 12 cases and inconsistency in the other 8 cases. For these the variance can possibly be attributed either to some ambiguity in the task definition or to controversy over automation, or perhaps to both.

Thus, the original concept of categorization of low confidence tasks was essentially verified by the empirical findings. That is, it was expected that four sets of tasks would emerge: a preponderance with an acceptable confidence level, a small set representing some form of procedural error in the rating process, a small set arising from ambiguity of task definition, and a small set indicative of clear cut differences of opinion among raters. The only unexpected finding was that the tasks in the lowest confidence set were all alike in regard to the nature of the task and the condition of being rated on a single, and possibly misdesignated, performance capability.

Since there was statistical reason for confidence in the automation indices for 213 of the 265 tasks (80.4% of the cases), it was possible to proceed with the assignment of these tasks to automation levels. The proper placement of the remaining 52 tasks with suspect automation indices was somewhat less certain. However, in the interest of obtaining an initial approximation of automation levels and task allocations, it was decided to assign all tasks (including the 52 suspect ones) to automation levels on the basis of their automation index. This procedure had the advantage of providing some working hypotheses about the types of tasks to be allocated to machines at successive levels of automation. It also offered a context in which to evaluate the suspect tasks and determine their proper position on the man-machine performance continuum.

Thus, in the discussion of automation levels in the following section, all tasks have received a tentative assignment to man or machine resources at each level. In the case of the suspect tasks, this was merely a convenience in order to proceed with the analysis. Final disposition of these cases was deferred until later in the study when the recommended level of automation was selected.

4.2 Automation levels

Five levels of automation were derived from the task rating data, then checked against automation levels in the present ATC system and against the logical relationships within the generic AATMS functional analysis. The paragraphs that follow describe these steps.

4.2.1 Task Array by Rating

As soon as the decision had been reached that geometric means were to be used as the scaling parameter, all tasks were arrayed on a geometric mean scale. Figure 4.2-1 shows the array. It had been expected that the ratings would yield a distribution with variability sufficient for discriminating the relative "automatability" of tasks. Such a characteristic was obtained. Further, as Figure 4.2-1 shows, tasks tended toward subsets in the distribution. These subdivisions resulted in some intervals with few or no members. Since confidence could be placed in the relative locations of tasks falling in subsets above and below these empty points, these holes in the distribution gave good indication of convenient bounds for automation levels.

4.2.2 Comparison With Present ATC Automation Level

It has been pointed out that the functional analysis done earlier in this project is generic. No particular system approach or automation level is embodied in the functions, subfunctions, and tasks in that analysis. But specific expressions of functional and task concepts, such as the presentday ATC system, can be compared with the generic description.

As a check on the validity of the raters' judgments at the task level, a comparison was made to determine what AATMS tasks.could be found to be automated now in the ATC system. The comparison was done independently, after the rating data had been processed. The object was to determine whether raters had assigned high scores, indicating relative amenability to automation, to those tasks which are in fact presently automated. Table 4.2-1 shows the results. Of the twenty-two cases compared, all but two had been given high scores by the raters in relation to other tasks. One exception is Task 13.3.1 "Transfer Responsibility for Control", which is part of the ARTS III automated hand-off configuration. The other, Task 17.1.6 "Transmit Weather Observation Report", is automated in some cases and manual in others in today's system.

Figure 4.2-1 Automation Level Boundaries
TABLE 4.2-1 TASKS PRESENTLY AUTOMATED IN NAS/ARTS III

TASK NUMBER	TITLE	$\begin{aligned} & \text { AUTOMATION } \\ & \text { INDEX } \end{aligned}$	AATMS AUTOMATION LEVEL
2.2.1	Determine Jurisdiction/Terminal Demand Due to Commercial Schedules	58.5	II
2.2.2	Process and Store Reservations	56.2	II
2.2 .3	Determine Jurisdiction/Terminal Demand Due to Reservations	58.5	II
2.2 .4	Determine Total Jurisdiction/Terminal Demand	62.6	II
2.3.1	Compare Capacity with Demand	53.6	III
2.3.2	Determine Origins of Demand in Capacity Overload Situations	49.9	III
2.3 .3	Determine What Number of Aircraft are to be Delayed for What Period of Time	60.2	II
2.3.4	Determine Where Delays are to be Absorbed	62.0	II
2.3.5	Formulate Flow Control Directives	66.5	I
6.1 .1	Receive/Enter Correlated Position and Identification	68.6	I
6.3 .1	Derive Rate of Change of Position	55.5	II
6.3 .2	Compute Short-Range Extrapolations	77.3	I
6.4.2	Detect Aircraft Emergencies	62.8	II
8.1 .2	Predict Aircraft Paths	65.2	I
9.1 .1	Determine Identity and ETA of Arriving Aircraft	55.0	II
9.1 .2	Determine Identity and ETD of Departing Aircraft	53.7	III
9.1.3	List Arriving and Departing Aircraft and ETA/ETD	63.3	II
13.3.1	Transfer Responsibility for Control	36.7	V
13.3 .2	Compile-Required Information for Clearance Function	51.3	III
17.1.6	Transmit Weather Observation Report	47.3	IV
17.7 .1	Monitor COMM and NAV Systems for Status Change	55.4	II
17.7 .2	Activate Standby Equipment	51.8	III

The close correspondence between rater judgments as to the relative amenability of AATMS tasks to automation and the actual state (manual or automated) of comparable tasks in the present-day ATC system gives support to the position that the rater judgments form a valid basis for deriving descriptions of successively higher AATMS automation levels.

4.2.3 AATMS Automation Level Boundaries

Figure 4.2-1 shows the AATMS tasks arrayed on a rating scale, with four boundaries specifying five levels of automation in place. The lowest automation level boundary separates those tasks that are most amenable to automation and some of those tasks that are now automated. The highest automation level boundary separates those tasks rated least amenable to automation and also those "suspect" tasks described in 4.1.2 above. The effect of the location of these outer boundaries is to isolate the two tails of the distribution of tasks. All boundaries were located by following the rule that interstices between task subsets are the most logical points to make preliminary choices.

The large group of tasks remaining within the distribution were divided into three subsets by locating boundaries at two gaps that appear in the distribution on the rating scale. Thus, as the figure shows, five levels of automation were described, replacing the continuous scale of automatability with five discrete groups of tasks. Tasks within one level were, for the purposes of preliminary analysis, considered equally automatable.

4.2.4 AATMS Automation Level Descriptions

With automation level boundaries in place, the entire array of AATMS tasks became five separable subsets. By considering each task in light of its automation level and its logical position within the AATMS functional flow, it was possible to examine the implications of each automation level from the subfunction, function, and system viewpoints. The discussion that follows is based on such an examination.

4.2.4.1 AATMS Automation Level I - Computational Aid

Automation level I (the lowest order automation level) includes 39 AATMS tasks, of which four are presently automated in the ATC system. No entire AATMS function is included at level I. Indeed, many functions are
not represented at all. With the exception of one task in Function 2, Flow Control, no task from Functions 1 through 5 appears at level I, nor are Functions $9,12,13,15$ and 16 represented in the task subset bounded at level I. The functions absent from level I are:

1.0 Provide Flight Planning Information

2.0 Control Traffic Flow*
3.0 Prepare Flight Plan
4.0 Process Flight Plans
5.0 Issue Clearances and Clearance Changes
9.0 Control Spacing of Aircraft
12.0 Issue Flight Advisories and Instruction
13.0 Handoff
15.0 Provide Ancillary and Special Services
16.0 Provide Emergency Services

The indication is that, at this lowest-order level of automation, the tasks in these functions (with the exception noted in flow control) are all relatively less amenable to automation than those from other functions which are represented in level I. The tasks which do appear in level I are from:
6.0 Monitor Aircraft Progress
7.0 Maintain Conformance With Flight Plan
8.0 Assure Separation of Aircraft
11.0 Provide Aircraft Guidance
14.0 Maintain System Records
17.0 Maintain System Capability and Status Information

The majority of these tasks (25 of the 30 level I tasks) are from "active control" AATMS functions like 6, 7, 8 and 11 . The remainder come from "records-keeping", functions 14 and 17. Two subfunctions, vector computations in Function 11 and traffic summaries preparation in Function 17, are automated at level I.

Most of the tasks related to active control of aircraft that are allocated to automated means at level I involve aids to control. For example in Function 6, Monitor Aircraft Progress, such tasks as 6.1.2, Receive/Enter Position, and 6.3.3, Compute Long-Range Deviations, appear. In Function 7, Maintain Conformance With Flight Plan, 7.1.2, Construct Pairs of Flight Plans to be Compared, 7.2.2, Compute Deviations Between Aircraft's Intended and Actual Present Position, and 7.3.3, Compute LongRnage Deviations (in t) from Flight Plan, appear. Similarly, the tasks from Function 11, Provide Aircraft Guidance, that are found in automation level I include 11.2.3, Compute Ground Speed, and 11.3.2, Compute Vertical Speed.

Tasks describing computational aid in Function 8, Assure Separation of Aircraft are also found in level I. This includes most of the tasks involved in conflict prediction, like 8.1.5, Determine Conflict Probability for Each Pair and 8.1.6, Determine Conflict Imminence for Each Pair. Also included among tasks whose ratings fell within the level I boundary is 8.1.7, Determine Action Required. (It should be noted, however, that conflict resolution falls mostly in higher automation levels. The only task from that subfunction, 8.2 Resolve Conflicts, represented at level I is 8.2.2, Analyze Performance Changes for Conflict.)

The remainder of the tasks in level I are largely those related to data storage and manipulation in functions not involving active control. One task from Function 14, Maintain System Records, appears at level I: 14.2.5, Enter Data Element Into Storage. Such tasks from Function 17, Maintain System Capability and Status Information, as 17.1.8, Store Weather Information, 17.2.2, Retrieve Affected Data Base Item, and 17.8.5, Store Data Base Item, characterize this automation level with respect to recordskeeping.

4.2.4.2 AATMS Automation Level II - Aids to Decision Making

Automation level II contains 58 AATMS tasks, of which 11 are automated in the present-day ATC system. (Levels I and II combined account for a total of 15 of 22 cases of present-day ATC automation of AATMS generic tasks.) While no entire AATMS function is yet automated at level II, five subfunctions are automated at this level as compared to two at level I.

Many more AÁTMS functions appear in automation level II than appear in level I, but some are still absent from both level I and level II. These are:

Function 1.0, Provide Flight Planning Information (except for one task in level II)

Function 3.0, Prepare Flight Plan
Function 4.0; Process Flight Plan
Function 13.0, Handoff (except for one task in level II)
Function 15.0, Provide Ancillary and Special Services
All the remaining AATMS functions are represented in the level II task subset by two or more tasks. As is the case at level I, those AATMS tasks related to active control of aircraft make up a large part of the level II subset. Some of these tasks extend the theme of automating computations to aid control, as in level I. Others, however, introduce another kind of aid. These include tasks in Function 6.0, Monitor Aircraft Progress, like 6.4.1, Determine Aircraft Readiness, and 6.4.3, Determine Nature of Emergency. At AATMS automation level II, such tasks in Function 7.0, Maintain Conformance with Flight Plan, 7.1.5, Propose Revised Flight Plan to Correct Long-Term Conflicts Among Flight Plans, and 7.4.1, Compare Deviations with Tolerances are found. Separation assurance, Function 8.0, is represented at level II by tasks such as 8.1.8, Monitor for Unexpected Deviations, and 8.2.1, Hypothesize Performance Changes.

In Function 11, Provide Aircraft Guidance, the computation of vector components begun in level I is extended to include computation of guidance commands themselves, Subfunction 11.4. Level II thus contains tasks which, if automated, would provide aids to decision-making as well as computational aids in these AATMS functional areas.

Automation level II marks the first appearance of tasks from Function 9, Control Spacing of Aircraft, and Function 16, Provide Emergency Services. Function 9 is represented by tasks like 9.3.1, Analyze Temporal Distribution of Arrivals and Departures, and 9.5.3, Check Proposed Performance Change for Predicted Conflict. Two function 16 tasks fall in level II. They are 16.2.3, Determine Aircraft to Provide Assistance, and 16.2.6, Determine Emergency Flight Plan.

Another AATMS function which first appears at automation level II is Function 12, Provide Flight Advisories and Instructions. While this function is not necessarily one of control itself, it is more directly related to active control than are the records-keeping functions, 14 and 17 . Three tasks from Function 14 appear at level II; three tasks from function 12 appear, including tasks 12.1.4, Retrieve Information Requested, 12.2.1, Evaluate Advisory for Data Content, and 12.3.2, Compile Alert Message.

While automation level II does not yet encompass flight planning or flight plan processing, some other functions that are carried out prior to flight are represented. In particular, Function 2 (flow control) appears in level II, with seven tasks out of a total of fifteen in the function represented at this level. (It should also be noted that of the eleven cases of correspondence at automation level II with tasks presently automated in the ATC system, 6 relate to flow control as an activity.)

The remainder of the AATMS tasks in automation level II are related to records-keeping. Function 14, Maintain System Records, has tasks like 14.2.3, Determine if Data Transform/Reformat is Required, and 14.3.6, Compile Report, at level II. Function 17, Maintain System Capabilities and Status Information is represented at level II by tasks like 17.8.1, Monitor Ground Facilities for Status Change, and 17.9.5, Format User Class Data Base Item.

4.2.4.3 AATMS Automation Level III - Decision Making

Automation Level III includes 71 AATMS tasks. Five of these are found to be automated in today's ATC system; twenty of the twenty-two cases are automated when levels I, II, and III are taken cumulatively.

The cumulative affect on AATMS is also significant by the time automation level III is reached. Again, no entire function is included as yet, but at this level, sixteen complete subfunctions fall entirely into the automated category.

In the "active control" area, this automated category includes subfunctions like 6.2, Compile Aircraft Time-Position Profile, 7.2, Determine Current Deviations From Flight Plan, 8.1, Predict Conflicts, and 9.1, Maintain Predicted Arrival/Departure Schedule for Each Airport.

Such "records-keeping" subfunctions as 14.2, Compile and Store System Records, 17.7, Determine Capability and Status of COMM-NAV System, and 17.8, Determine Capability and Status of Ground Facilities are entirely automated when levels I, II, and III are taken together, and activities prior to flight like 2.3, Determine and Resolve Capacity Overload Situations, and 5.2, Determine Clearance to be Issued, are also judged as automatable.

At the task level, the nature of automated activities begins to include decision-making itself, as well as aids to decision and computational aids. Examples include 2.1.6, Determine Total Effect on Capacity, 5.2.2, Determine Clearance Tolerances, 9.5.1, Select Sequence/Schedule Change to be Implemented, or 12.1.3, Select Applicable Preformatted Messages.

Aids to decisions involved at this level represent some higher-order analysis and synthesis than that found earlier. Tasks like 4.2.3, Probe for Conflicts Among Flight Plans, 9.5.2, Hypothesize Performance Change Required to Implement Required Sequence/Schedule, 13.1.3, Correlate Aircraft Position with Airspace Structure Boundaries, 14.1.4, Determine Necessity for Additional Information, and 17.2.5, Format New Data Base Item, illustrate level III decision aids.

More than half of the 71 tasks in level III are concerned with decision-making and decision aiding. About one-fourth of the tasks at this level relate to "records-keeping" and the remainder are concerned with receipt, entry, or retrieval of information.

4.2.4.4 AATMS Automation Level IV - Automated Communications

Fifty-nine AATMS tasks are included in the subset between level III and the upper bound of level IV. The functional impact of the addition of these fifty-nine to those which fall below level IV is that three entire AATMS functions are now automated. They are:

Function 8.0, Assure Aircraft Separation
Function 11.0, Provide Aircraft Guidance
Function 14.0, Maintain System Records
Several other functions at level IV are close to complete "automation." For example, only one manual task remains in Function 17.0. The same is
true for Function 13.0, Handoff*, Function 9.0, Control Spacing of Aircraft, Function 7.0, Maintain Comformance With Flight Plan, Function 6.0, Monitor Aircraft Progress, and Function 2.0, Flow Control.

The same trend with respect to automatability at higher-order levels of decision-making and decision aiding tasks that was discussed earlier continues at level IV. Nearly half of the fifty-nine tasks are in these categories.

Of the remainder, most tasks are higher-order data manipulation; for example, Function 17.0 accounts for thirteen tasks at this level.

A relatively small number of tasks, however, make a significant contribution to the character of the effects of automation on AATMS at level IV. These are the tasks involving transmittal to, or receipt of information from the pilot, like 7.4.3, Receive Pilot's Response Concerning Resolution of Out-of-Tolerance Present and/or Long-Range Deviations, 8.2.4, Transmit Performance Change Message to Pilot, 11.5.2, Transmit Vectoring Instructions to Pilot, and 13.1.4, Receive Pilot's Request for Transfer of Responsibility.

4.2.4.5 AATMS Automation Level V - Full Automation

The highest order AATMS automation level contains 38 tasks. These fall in that subset adjudged by the raters to be, in relation to all other AATMS tasks, least amenable to automation**.

Task that fall in this category are ones like:
1.1.2 Accept Telephone Request
3.1.2 Specify Aircraft and Pilot Information
4.2.8 Compile List of Discrepancies
5.1.3 Determine Pilot Intentions Following Missed Approach
9.5.5 Submit Performance Changes Within Existing Flight Plan to Clearance Function

12.1.7 Transmit Special Response to Pilot

*This is the "transfer responsibility for control" task mentioned earlier.
**The subset also contains many of the "suspect" tasks discussed in 4.1.2 earlier.

13.3.1 Transfer Responsibility for Control

16.2.8 Inform Pilot of Change to Emergency Frequency Link
17.1.4 Receive Supplemental Data

Of the 38 tasks, more than half are concerned with some sort of interaction between the files and the system, for example, 1.1.2, Accept Telephone Request: and 7.4.2, Inform Pilot of Out-Of-Tolerance Deviations. This placement of these kinds of tasks continues the pattern first visible at level IV. The remainder, while not descriptive of AATMS/user interface activities, does involve a level of complexity which in the judgment of the raters, placed them in this last subdivision of automatability.

4.2.5 AATMS Automation Levels by Function

Table 4.2-2 shows the percentage of tasks in each AATMS function that would be automated at each of the five automation levels.

The table illustrates the point that the nature of the tasks, as seen by the raters, differs markedly from function to function. The effect is that automation reaches some functions, for example, 7, 8, 11, at lower levels than others, for example, 2, 4, 16.

A second effect shown in the table is that the size of the automation increment from one automation level to the next higher level also differs markedly from function to function. For example, in Function 2, the percent difference between Level I and II is 40 , while Function 1 has only a 13 percent change between the same two automation levels.

It should be noted that these two effects stem mainly from the manner in which the raters placed the tasks along the automation continuum, i.e., the effects would persist if the automation level boundary locations were different than those chosen for this discussion.

Page 4.2-12
table 4.2-2 PERCENT AUTOMATION BY FUNCTION AND AUTOMATION LEVEL

FUNCTION	PERCENT AUTOMATEDAUTOMATION LEVEL				
	$\begin{array}{\|c\|} \hline \text { COMPUTATION } \\ \text { AID } \\ \hline \end{array}$	$\begin{gathered} \text { II } \\ \text { DECISION } \\ \text { AID } \\ \hline \end{gathered}$	$\begin{gathered} \text { III } \\ \text { DECISION } \\ \text { MAKING } \end{gathered}$	$\frac{\text { IV }}{\text { COMMUNICATION }}$	V FULL AUTOMAT ION
1.0 Provide Flight Planning Information	0	13	38	75	100
2.0 Control Traffic Flow	7	47	67	93	100
3.0 Develop Preliminary Flight Plan	0	0	11	44	100
4.0 Process Flight Plan	0	0	17	48	100
5.0 Issue Clearances and Clearance Changes	0	50	60	70	100
6.0 Monitor Flight Progress	24	53	82	94	100
7.0 Maintain Conformance with Flight Plan	29	57	79	93	100
8.0 Assure Separation of Aircraft	50	79	93	100	100
9.0 Control Spacing of Aircraft	0	47	75	88	100
11.0 Provide Aircraft Guidance	31	81	94	100	100
12.0 Issue Flight Advisories and Instructions	0	17	56	72	100
13.0 Handoff	0	10	50	90	100
14.0 Maintain System Records	6	38	88	100	100
15.0 Provide Ancillary and Special Services	0	0	0	63	100
16.0 Provide Emergency Services	0	15	54	92	100
17.0 Maintain System Capability and Status Information	29	41	76	98	100
All Functions	15	37	64	86	100

5.0 CONCLUSIONS

The discussion which follows is confined to two specific areas, the task allocation methodology and its application in derivation of system automation requirements. The broader ramifications of automation levels and their relationship to system design and evolution are treated elsewhere in this report. In Volume I, Chapter 4, the reader will find a general discussion of the implications of automation in an advanced air traffic management system, wherein the questions of automation benefits, system characteristics, configuration development, and system evaluation are addressed. Volume IV of this report contains a detailed exposition of the recommended level of automation and specific analyses of automation requirements which derive from this recommendation. The conclusions which follow, therefore, pertain only to the man-machine allocation methodology and its usefulness as a basis for subsequent system analysis and specification of design requirements.

5.1 METHODOLOGICAL IMPLICATIONS

One of the problems faced by the designer of a complex man-machine system is how to make effective use of previous research. Broadly speaking, research can be of two kinds: that directed toward supporting the design of a specific system and that addressed to some general problem. From the designer's viewpoint, neither is wholly satisfactory. Research carried out in designing one system may be too narrow in focus or too specific to be adapted to fit another system. On the other hand, research of a general nature tends to treat problems at an abstract level and often in a fragmentary way, with the result that the system designer is left with uncertainty about its relevance or implications for the task at hand. Bear in mind also that the designer, unlike the researcher, is not looking for universality; he is seeking a solution to a specific design problem. Thus, he seldam asks how things are in general, but how they should be in this particular case. This is to say that the designer is practically oriented; he is not so much concerned with principles as with their application.

The man-machine allocation methodology developed for this study was intended to cope directly with the problem of bridging the gap between principles and application. The aim was to devise an explicit procedure by which criteria could be applied to make decisions about the assignment of tasks to human or automated resources. To put it another way, the objective was to go beyond the usual collation of research findings and design principles and to give the system engineer a clearly defined and objective method for applying these rules to the question of man-machine allocation in AATMS.

The approach involved construction of a quantitative and objectively derived rating scale of task automatability, called the Automation Index. The foundation of the Automation Index was an analysis of air traffic control operations, carried out to a level of detail where each unit of activity (task) was allocatable as a whole to man or machine resources. The Automation Index itself was a multi-dimensional scale made up of a set of performance characteristics extracted from the research literature on man and machine capabilities. The fundamental assumption was that, while men and machines have certain basic capabilities in common, the manner in which they manifest these capabilities and the characteristics of performance are different. These performance differences formed dimensions which could be used to rate the suitability of man and machine resources for carrying out task assignments. It is important to note that the rating process did not involve a direct judgment about automation per se, but rather a matching of task requirements and the performance characteristics of resources which might be assigned to the task. Putting the question in this form served both to minimize the influence of preconceptions about automation and to focus attention on the evaluation of resource capabilities in light of task requirements.

From a practical point of view, the task allocation methodology proved to be a success. The rating process required about three man-days of effort by each rater, but considering the number of individual judgments to be made (about 770 by each participant) and the voluminous task descriptions which had to be studied, this was not an inordinate investment of time. Rater compliance was exceptionally high; in fewer than 2% of
the cases did raters decline to make a rating of a task-capability combination. Ratio scaling, although unfamiliar to the participants, proved to be an acceptable and convenient technique, once understood. The raw data from the ratings, since they were expressed in numerical form, lent themselves readily to machine processing using simple, standard statistical routines.

Analysis of the findings indicated that the aggregation of rating scores produced an Automation Index of high validity and internal consistency. Interrater agreement, as tested by the Spearman-Brown reliability coefficient, was 0.822 in a circumstance where a value greater than 0.60 would be considered acceptable. Additional tests of the rating results by standard analysis of variance revealed that there was no discernible rater bias attributable either to occupational specialty or group affiliation. The internal variability of task Automation Indices, due either to lack of consensus among raters or inconsistency of ratings across performance capabilities within given tasks, was generally low. Over 80% of the task indices, when tested by four separate statistical confidence measures, proved to be reliable. The variability of the remaining task indices (52 of a total of 265) turned out to be a useful symptom for identifying areas of controversy about automation and for isolating conceptual and procedural problems in the task descriptions and the rating protocol. In other words, there was a built-in quality control element in the rating procedure.

Apart from internal statistical reliability, the task rankings by Automation Index also exhibited a gratifying validity when tested by external criteria. One such test was a comparison with the present ATC system. An examination was made of 22 generic AATMS tasks which could be closely identified with tasks presently automated in the NAS Stage A and ARTS III system. The Automation Indices for 20 of these tasks indicated that the raters also considered them highly suitable for automation. Thus, taking the existing system as a standard, the Automation Index produced task allocations that were highly consistent with the engineering judgment which led to the automation of these tasks in NAS Stage A and ARTS III.

A second, and perhaps more significant, indication of the external validity of the findings was found by examing the common characteristics of tasks which lay within any given level of automation. Tasks which, on logical grounds, had common performance requirements or functional similarity tended also to have equivalent Automation Indices. This finding suggests strongly that raters, regardless of their background and experience and despite any general bias they may have had about automation, were inclined to have a highly uniform and logically consistent view of performance requirements in relation to tasks. Thus, it seems legitimate to conclude that the rating process did, in fact, tap an underlying and common conception of resource-task compatibility.

To summarize, the positive features of the Automation Index methodology appear to outweigh its disadvantages. The method is conceptually simple and practical to use. In comparison with other methods for determining man-machine task allocation, it is rapid and fairly economical of manpower. The resulting rater estimates, because they are expressed in numerical form, are readily processed by machines and simple to manipulate mathematically. The Automation Index, derived by straightforward computational techniques, is both statistically reliable and logically coherent. The method is easy to replicate and verify. And, highly important, the method yields pertinent and detailed answers with regard to assignment of tasks to human and automated resources. There are some negative attributes. The method calls for a high level of rater cooperation. Extensive task analysis and preparation of the rating protocol are required before the rating process can begin. The results, because they are expressed as numbers, are subject to possible misinterpretation and even abuse. That is, the task rankings are valid only as relative indices of automatability, yet they are prone to interpretation in an absolute sense by those not fully conversant with the method and the rationale of the rating procedure. However, as stated above, these disadvantages are far from overwhelming, and there appears to be much more on the positive side of the ledger.

5.2 APPLICATIONS OF THE AUTOMATION INDEX

The immediate application of the Automation Index was to provide a direct (albeit tentative) answer to the question of man-machine task allocation. However, the Automation Index also had several other important uses in the latter stages of the AATMS study, where the objective was to determine system requirements arising from the recommended level of automation. An analysis of these requirements is provided in Volume IV of this report and will not be repeated here. However, in the interest of providing a full picture of the utility of the Automation Index methodology, it is appropriate to append here a brief discussion of its subsequent applications in the AATMS study.

The Automation Index provided a relative ranking of tasks according to their suitability for automation. This formed the basis for subdividing the entire functional array into incremental steps or levels, progressing from a wholly manual system concept to one which was fully automated. This, in turn, provided the structure for the analysis of the man and machine resources required to operate the system and the selection of a recommended automation level which offered an optimum balance of men and machines. Without the help of the Automation Index in defining suitable groups of tasks to transfer successively from human to automated resources, the number of permutations and combinations to be considered in the exercise would have been unmanageably large. Thus, the Automation Index served to determine not only the order in which tasks should be considered for automation but also the size and specific composition of the increments which were to be used in the resource requirements analysis.

A second, and equally significant, use of the Automation Index was its application in the analysis of failure modes requirements. In the event of system failure (i.e., the loss of some automated resource), one possible form of response would be reversion to a manual mode of operation. To assess the appropriateness of this response, it was necessary to determine the suitability of man to perform the tasks carried out by machines in the normal operating state of the system. The Automation Index provided a valuable form of evidence in making this determination. That is,
if the candidate tasks had Automation Indices reflecting man-like performance requirements, this was taken as a sign that manual back-up in failure modes was, at least, feasible. Other factors (notably the frequency of task performance and the estimated time to perform the task manually) were also taken into consideration in the final determination, but the suitability for manual performance as expressed by the Automation Index was taken as the necessary first condition.

Another application of Automation Index was in the analysis of control and display requirements. The starting point for this analysis was a detailed definition of the man-machine interface. This meant systematically locating each point in the functional array at which a manual task followed an automated task or vice versa. The Automation Index made this exercise possible because it provided a precise indication, at the task level, of which activities were assigned to man and to machines for any given degree of system automation.

Beyond these specific applications in deriving end products of the study, the Automation Index methodology also offers useful information at two more general levels. First, it provides a basis for sorting the task allocations as to level of confidence. Be segregating those tasks where the indices are firm from those of questionable reliability, additional research can be focussed sharply on the real problem areas. For example, the method makes it possible to isolate a subset of tasks which have been inadequately or ambiguously defined and so to pinpoint defects in the functional añalysis. Similarly, it is also possible to label some tasks as controversial and, thereby, to earmark them for more intensive analysis by a different mode of study such as simulation or operational testing. At a second and still more general level, the Automation Index provides a valuable common denominator to structure and facilitate the comparison of alternative design concepts. This application alone may, in the long run, prove to be the most useful methodological contribution arising from this study. By lifting the evaluation of alternative designs, at the concept stage, out of the realm of speculation and placing it on an objective and quantitative basis, the Automation Index will give the designer an early and detailed view of the practical consequences of any given scheme of man-machine task allocation.

It would be remiss to conclude this survey of applications without setting in proper perspective the value of the Automation Index as a design tool. The Automation Index is not to be viewed as a substitute for engineering judgment, which traditionally has been and certainly will continue to be the mainstay of system design. The allocation of tasks to men and machines on the basis of the Automation Index must be considered tentative at this point. It will have to be tested, confirmed, and refined by interplay with factors like safety, capacity, and cost. For any configuration thus evolved, the role of man in the system will require further exploration -- man must be able to manage the system, users must accept the configuration, controllers must be able to alter their behavior in failure modes to achieve fail-operational or fail-safe performance. Engineering judgment, simulation, and all the other tools in the system designer's repertoire will be needed.

As a result of the present study, however, there is now a design aid not previously available. The universe of functions and tasks has been derived and defined in a way which is independent of equipment considerations. Further, the array of tasks has been ordered by means of the Automation Index according to the relative capabilities and performance characteristics of men and machines. Thus, the system designer has at his disposal a new method, allowing him to make an initial estimate of automation priorities which is at the same time relevant to a system concept and exempt from innate bias toward means. The Automation Index methodology, therefore, should be viewed not as a mechanistic replacement for engineering judgment but as a new and more systematic way for exercising engineering judgment in the design process.

APPENDIX A
 SUMMARY OF MAN AND MACHINE PERFORMANCE CAPABILITIES

This appendix contains extracts from the research literature on man and machine performance capabilities. The citations are grouped under seven categories of performance:

- Monitoring
- Sensing
- Information Processing
- Interpreting
- Decision Making
- Storing and Retrieving Information
- Responding

Within each category, statements are presented under three headings:

- Human Capabilities and Limitations
- Machine Capabilities and Limitations
- Man-Machine Performance Comparisons

Each statement is referenced to the bibliography provided at the end of this appendix.

Human Capabilities and Limitations

By being alert for changes, human beings can frequently anticipate undesirable conditions.
ref. 5

Man can function very effectively as a monitor of complex systems if given proper information and displays.
ref. 9

If man is already present in a given situation, it may be more economical to use him as a monitor than to provide additional equipment, provided the monitoring tasks are properly designed to compensate for man's limited capabilities.

If man is to serve as an emergency backup (to automatic monitoring equipment), it may be necessary to assign manual tasks which could be better performed by machine, simply to keep the man aware of what is happening in the system.

If signals must be detected in high noise environments, then it may be desirable to use man for monitoring. In operational situations, this applies mostly to cathoderay tube displays such as radar displays, auditory equipment, and external comunications equipment. In maintenance situations, this capability is most relevant in the use of test oscilloscopes.

```
ref. 28
```

Although many machines are made completely automatic, men often should be used to override the machine to meet emergencies or situations requiring judgments for which the machine has not been programmed...Also, in the event of a failure or other emergency, the man could override the automatic controls.

Detection of low energy signals in a random signal background appears easier via sound than visually. Combined inputs (sound and visual) indicated some performance improvements.

In addition to his unsuitability for the detection of electromechanical energies per se, man is typically a poor monitor of infrequently occurring events or events occurring over long periods of time. He is easily distracted and he may become bored or fatigued.

```
ref. 28
```

Man is an unreliable monitor. The more passive his role in a system the more he tends to withdraw from the system by letting his attention wander or even by going to sleep. If it is desirable that man serve as an emergency backup, then he should be given tasks to keep him aware of what is happening in the system so that he can take over when needed. It may be necessary to give him these tasks even though they could better be done by a machine.
ref. 23

Human performance when monitoring displays for signals that occur very rarely is generally unreliable.
ref. 26

In general, performance in monitoring extremely lowfrequency events deteriorates over time, and a number of relevant variables have been identified. Among the most prominent are signal characteristics: frequency, regularity, size, intensity, and spatial distribution; and task variables: spacing of rest periods, level of extraneous noise (visual and auditory), presence of other stimuli, and schedule of reinforcement for observing responses.

The human operator should not be assigned monitoring tasks that require continuous attention to a display unless absolutely necessary.
ref. 26

One shortcoming (of human montoring ability) is the human tendency to fill in gaps in the displayed information on the basis of expectancies. When these expectancies are not valid, the technician may see something that is not there, or may miss out-of-tolerance indications not in line with his erroneous expectancy, ref. 16

Machine Capabilities and Limitations

```
If at all possible, the computer rather than a man
should have primary responsibility for maintaining
vigilance and detecting when, after period of in-
activity, some system action is required. ref. 4
Machines generally are better in their abilities to
monitor for prespecified events, especially when
infrequent (but machines cannot improvise in case
of unanticipated types of events). ref. 15
Humans are relatively poor, with respect to machines,
for monitoring other men or machines. ref. 27
```

Where possible, equipment should be designed to mon-
itor men and stop, or give a warning, whenever operators
make mistakes.
ref. 16
Long-term monitoring of specific physical energies gen-
erally should be performed by equipment sensors.
ref. 28
If the unpredictability of the signal makes it difficult
or impossible to use an equipment sensor, then it may
be necessary to use man. For example, the visual and
auditory capabilities of man may be useful when it cannot
be predicted:
(1) Where the signal will occur, although some notion may be had of when it will occur;
(2) When the time of onset will be, although the position in space of the signal is predictable;
(3) Whether something is going to occur. ref, 28

The computer should have primary 'responsibility' for vigilance and detection functions following periods of inaction whenever possible.

Page A-5

Man-Machine Performance Comparisons

MAN
Man can monitor low-
probability events for
which, because of the num-
ber possible, automatic
systems would not be
feasible.

MACHINE

```
Man can monitor low
probability events for
which, because of the num-
ber possible, automatic
systems would not be
feasible.
```

```
Men are poor monitors of
infrequent events or of
events which occur fre-
quently over a long period
of time.
```

```
Man can detect masked sig-
nals effectively in an
overlapping noise spectrum
on displays such as radar
and sonar.
```

Program complexity and alternatives of machines are limited so that unexpected events cannot be adequately handled.
ref. 10

Machines can be constructed to detect reliability in events which occur frequently over a long period of time.
ref. 19

Machines are not very good at detecting signal in noise when spectra overlap.

```
    Human Capabilities and Limitations
The human sensing capacities of vision and audition
generally surpass those of machines.
ref. 5
Man senses many stimuli at once and will therefore
select, from a variety of responses available to him,
one which is more or less appropriate to the situation. ref. 5
The ability to detect certain forms of energy, especially
very low energy levels which can be detected by humans,
but which are not great enough to activate an instrument,
is one of man's characteristics.
ref. 24
Man has excellent signal detection ability and his realtime capacities can be used in sensor systems such as radar, sonar and infrared; however this usually is one of the least desirable uses of men in systems.
Human beings are usually superior to machines in perceiving and interpreting sensory information.
Since man is essentially a single-channel receiver, the simultaneous use of more than one channel should generally be avoided.
Detection of low energy signals in a random signal background appears easier via sound than visually. Combined inputs (sound and visual) indicate some performance improvement.
If man is already present in a given situation, it may be more economical to use him as a sensor than to provide additional equipment if the sensing requirements are within the range of human sensitivity. This also is related to the desirability of providing a man with enough work so that he will maintain a reasonable level of motivation and alertness.

\begin{abstract}
Man's capability to use several dimensions of a given sense modality when building up sequences or "chunks" of information has great potential for increasing channel capacity.
\end{abstract}
ref. 26

The capacity for absolute judgments of auditory stimuli in a single dimension (e.g., pitch) is a little over 2 bits, while that for visual stimuli varies between 2.1 and 3.1 bits. Combining two auditory dimensions increases capacity to 3.1 bits.
ref. 26

Human sensing is restricted to a relatively narrow range of physical energies. Man's visual sensing is limited roughly to the wavelengths between 300 and \(1,050 \mathrm{~m} \mathrm{\mu}\)-- an extremely small portion of the electromagnetic spectrum -- and his auditory sensing is limited roughly to the frequencies between 20 and \(20,000 \mathrm{cps}\) (in many people, the upper limit might be under \(10,000 \mathrm{cps}\) ), But human sensitivity -- in the sense of the minimum energy that man can detect -- compares favorably with the sensitivity of machines.

For the sensing function, the limitations of man are quite apparent. The physical-energy changes he can sense are limited to those which affect his receptors of vision, hearing, touch, smell, taste, and so on. In contrast, machines are able to sense changes beyond these limits, in the ultraviolet and infrared regions of the electromagnetic spectrum, above 200,000 cycles in the mechanical spectrum, and so on. Within the limitations of his senses, a man's sensitivity is quite good, since it is known that he can sense very small differences. But the number of changes he can respond to at one time is relatively small -- that is, his channel capacity is limited.
ref. 11

Human performance is limited with regard to excessive temporal demands (e.g., rapid sequential events, overlapping signals, multichannel events, etc.), and also with respect to infrequent input occurences.
ref. 26

Noise, or unwanted random signals, in the input degrades human performance seriously on a number of different types of perceptual tasks: detection of auditory and visual signals, recognition of patterns, and compensatory or pursuit tracking.... Human performance generally decreases as the period of intermittence (both for feedback and input information) is reduced.
Man is seriously limited with respect to bandpass, channel capacity, and peak power; man is essentially a single channel computer and must accomplish multiple tasks sequentially (i.e., by means of time sharing); his great asset is his capacity for learning and adaptive processes.
ref. 9

\section*{Machine Capabilities and Limitations}

The function of human sensing is not used with particular frequency in modern systems, largely because
machines can be designed to do a better job.
ref. 11

Machines can sense forms of energy that are in bands beyond man's spectrum of sensitivity, such as infrared, radio waves, X-rays, radar wavelength and ultrasonic vibrations.
ref. 15

Where values of physical energies must be quickly and accurately appraised, machanical devices are obviously superior to men.

Detection and discrimination of specific physical energies should be performed by equipment sensors, except for the following considerations:
a. If the situation requires the reception of many different types of physical energy in close proximity in time but not simultaneously (such as might be involved in steering a vehicle, where visual, auditory, tactual, and kinesthetic sensing all may be useful for control), the multipotentiality of man's senses may indicate his use for detection and discrimination functions.
b. If high noise levels are present, it may be necessary to utilize man to detect signals. This capability is often associated with detection of signals on cathode ray tube displays and use of comunication equipment.
c. If equipment sensors cannot be designed to provide effective scanning, then it may be necessary to use man. Man, through his ability to direct his attention to various portions of his environment, may provide a more effective means of detection than more highly programmed equipment sensors.
d. If contingencies which may arise in the operation and maintenance of the system cannot be predicted adequately during its design, it may be necessary to include man as a sensor for some back-up functions.

\section*{Man-Machine Performance Comparisons}
\begin{tabular}{lll}
\multicolumn{1}{c}{ MAN } & \multicolumn{1}{c}{ MACHINE } & \\
\begin{tabular}{ll} 
Man is a selecting mechanism \\
and must be set to sense \\
specific items.
\end{tabular} & \begin{tabular}{l} 
Machines are sensing \\
mechanisms.
\end{tabular} & ref. 19
\end{tabular}

\section*{Human Capabilities and Limitations}
Man is able to handle a great variety of different in-
formation processing tasks.
ref. 8
Man can use raw information immediately without coding,
punching or similar operations.
ref. 21
Generalized information processing and decision making
should be performed by personnel where:
    a. Pattern perception is important (especially where
        patterns may change in size, position, or energy
        configuration (types and strength levels) under
        different conditions.
b. Long-term storage of information is required.
c. Insight, discovery, or heuristic problem solving
        is required.
d. Decision making and learning. in a complex changing
        situation are required.
e. Ability to improvise and adopt flexible procedures
        is important and, within the state of the art,
        cannot be built into a machine program.
    f. Number of low-probability events which might occur
        is high and the cost or capacity of machine pro-
        gramming is exceeded by the requirement.
    g. Inductive reasoning is required, i.e., a require-
ment exists for generalizations to be made from
the specific events.
    A major characteristic of man as a data processor is his
    flexibility. First, people do not require extensive or
    precise preprogramming. Men can deal with changing sit-
uations and unforeseen problems in the absence of a
specific program.
    ref. 21
In the capacity of an information link, the human being has been found capable of processing about 3 bits of information per stimulus event regarding any stimulus dimension.

Man has certain advantages and disadvantages as compared with computers. His access time (speed of recall) is slow compared to that of a computer, but he is able to recall generalized patterns of previous experience to solve immediate problems. As yet, no computer can do this. Man learns to do numerical computations, but in the main his time constants are such that he is a relatively poor numerical computer -- especially under stress. He is, however, the only available computer that can solve problems by logical induction.

In general, man is superior to data-processing devices in the following respects:
a. For most tasks, he does not need extensive preprogramming. Through further learning, he constantly develops and modified his own programs. His previous education has already "programed" him.
b. He is more flexible; he can deal with unforeseen situations.
c. He can exercise judgment because he can selectively recall relevant facts and methods of solving problems.
d. He does not require special coding of messages; the information does not have to be transformed into digital form. He does, however, perform better when information is presented in certain forms than when it is presented in others.
ref: 16

Man learns to do numerical computations, but in the main his time constants are such that he is relatively poor numerical computer when under stress. No computer can match him, however, for the more qualitative, nonnumerical computations.
ref. 31

In marked contrast to his limited information-handing rate is man's ability to handle a great variety of different information-processing tasks. The number of different functions which a man is capable of performing almost defies enumeration, and undoubtedly is one of his greatest assets as a system component.
ref. 8

Man's data processing capability includes situations where the human acts as an encoder. Here there is a transformation of the input signals such that the response output may be either qualitatively and/or quantitatively different from the input. Cortical involvement may vary widely, depending upon the task; however,
the minimum degree of involvement would usually exceed that of the relay situation. The task of keying a code number to represent adḍess information would be an
example.
ref. 12
ref. 11
ref. 26
ref. 27
Humans are relatively poor, with respect to machines, for performing routine, repetitive tasks.

Humans are relatively poor, with respect to machines for computing and handling large amounts of stored information.

Humans are relatively poor, with respect to machines for ability to reason deductively (i.e., to use rules for processing information).

Man is a relatively poor numerical computer under stress but is unmatched for the more qualitative nonnumerical computations.

Man has great versatility in handling many different input and output codes; however he is a relatively slow information processor and is being replaced by machines in many clerical tasks.

Design the man-machine system so that the bandpass required of the man never exceeds three radians per second.

Design the man-machine system so that the transfer function required of the man is, mathematically, always as simple as possible, and, wherever practicable, no more complex than that of a simple amplifier.
ref. 31
ref. 9
ref, 3
ref. 3

\section*{Machine Capabilities and Limitations}
Specialized information processing and decision makingshould be performed by equipment where:
a. Deductive logic can be programmed.
b. Speed and amount of memory search or entry(storage) is an extensive requirement.
c. Highly complex computations or logical operations are involved.
d. Short-term storage and retrieval of large amountsof data is required.
e. System functioning requires extremely short time lags between scheduled events.
f. Many routines, channels, and memory areas must be utilized simultaneously (parallel operation).
g. A high degree of repetitiveness and routine isinvolved in the sequence of tasks or events.
h. Events are unambiguous and probable but can beexpected to occur only infrequently, e.g., asin monitoring of equipment readiness.
i. Reduction of the over-all amount of work load and activity for personnel can be expected and provided within system cost parameters.
Any high-volume information-processing task in which the rules for processing are simple and easy is just right for machine performance. And tasks which are not of this nature can of ten be made so by appropriate redefinition.
Machines are capable of handing highly complex operations (1.e., doing many different things at once).
Machines excel in ability to repeat operations very rapidly, continuously, and precisely the same way over a long period.
Computers, while not perfectly reliable, make fewer errors than men and often can detect their errors. They also can be more precise, performing more difficult procedures without extra cost, and when they can perform otherwise impossible computatione, they may reduce the cost of operation.
Data-processing devices are superior, in general, tohuman beings in the following respects:a. They can store much more data accurately. Acomputer can store thousands of items of infor-mation that no human being could possiblyremember.b. They can compute answers with much greater speedand accuracy. A computer can do accurately, ina few seconds, computations that would otherwiserequire many man-months.c. They can sort and screen data faster, rejectingall data that are not in a desired class andleaving the final judgment among the remainingalternatives to a human operator.
d. They are usually more reliable for routine decisions -- decisions that are always made in the same way according to some rule.
e. They are less subject to fatigue, prejudice, and other transitory factors that distort man's judgments and decisions.ref. 16
Machines designed to perform specific computing opera-tions are more efficient than man.ref. 5
Machines generally are better in their ability tocount or measure physical quantities.ref. 15
Machines generally are better in their ability to process quantitative information following specific programs. ..... ref. 15Machines excel in performing complex and rapid compu-tation with high accuracy.ref. 31
Machines are much quicker and more reliable than humans in identifying a specific item as belonging to a large inclusive class and in using rules for processing information. If the test and checkout operation can be programmed \(100 \%\), then a machine can be built to perform the operation rapidly and accurately with perfect repeatability. However, and this is often overlooked, procedures can be built to enable the human to follow the rules efficiently, though less rapidly and with a small but finite probability of error.

\section*{Man-Machine Performance Comparisons}

\section*{MAN}

Speed of reinstatement of rule sequences relatively low (as in computing).

Limits to length of sequential routines fairly high, but timeconsuming to train.

Easy to reprogram, does not require extensive or precise preprograming.

\section*{MACHINE}
```

Speed of using rule
sequences high (e.g.,
computing). ref. 11

```

Potential limits of length of routines very high.

Difficult to reprogram. ref. 21

Can be programmed to use optimum strategy for high-probability situations.

\section*{Human Capabilities and Limitations}

Interpretation of complex physical energy inputs should be performed by personnel.
a. Interpretation, as used herein, refers to the capacity to recognize or ascribe meaning, contextual relations, or organization to sensed energy. As such, it represents a first level of processing. Of course, any equipment transformation involving transducing, filtering, or amplification functions can be thought of as interpretation in the sense of simple processing of signals. However, the concern here is with situations which involve more complex signal transformation and organization.
b. Because of his capabilities for attending to selected portions of his environment, detecting many forms of physical energy, ascribing meaning to them based on past experience, and responding with appropriate actions, man is more effective than equipment in many situations where transformation of inputs is required. This is most evident in the perception of patterns and recognition of these patterns in new or unusual stimulus situations. For example, this includes the capabilities of man to interpret wave forms on cathode ray tube displays, interpret radar and sonar display, etc. Examples of how this perception of patterns or relationships can be transferred from one situation to another are evidenced in man's ability to steer vehicles under varying environmental conditions.
ref. 28

Man excels in locating and recognizing patterns, and making generalizations about them. He can perform many tasks which require use of this ability.
ref. 31

Man has the "ability to recognize objects and places despite varying conditions of recognition:"
ref. 17

Man has the "ability to select own inputs".
ref. 17
```

Use man for tasks requiring the discrimination of
signals in noise.
ref. 16
Use man where the task requires pattern discrimination
in a changing field.
ref. 16
Use man where discrimination must be made between multi-
ple inputs.
ref. 16

```
Psychologists and computer experts would '... list
pattern recognition, particularly visual pattern recog-
nition, as an important capability in which men far
excel computers..
ref. 4

In perception the human has distinct advantages over machines. Humans perceive patterns, not isolated bits. These patterns are not restricted to one sensory modality, but may include some or all of them. The operator hears a strange sound and detects an unusual odor in conjunction with a change in rate or degree of vibration in a machine. He senses from this pattern that something is wrong and he will stop the machine before it destroys itself. The human can perceive the pattern of an airplane blip through noise far more effectively than can the tracking program of the SAGE computer. Similarly he is able to see patterns on oscilloscopes. Man can also perceive patterns of events occurring over time and thereby anticipate events; this is behind much of his ability to learn.

Man exceeds computers in ability to recognize patterns in spite of transpositions, rotations, translations, and other distortions, which makes mechanical interpretation of complex visual displays, such as aerial photographs, or recognition of spoken words or longhand impractical.

Man can consider time-linked phenomena and extrapolate from observed trends in completing his picture of the system's operation.

Men have a high tolerance for ambiguity and uncertainty, based on life-long experience with ambiguity and the ability to translate uncertainty into probability.

In many system instances, the most important function performed by the human being is interpreting. Here the individual makes outputs which, in effect, place inputs into categories whose basis is their effects rather than their appearances. In other words, interpreting is a matter of identifying the meaning of inputs. ref. 11

While both man and machine are currently capable of recognizing patterns from prescribed universes, only man can currently discern relational pattern among items from non-prescribed universes.
```

ref. 5

```

Some limitations of human interpretive abilities should be noted:
a. Past perceptual experiences influence present interpretation and, conversely, current interpretive activities influence stored events and change them both qualitatively and quantitatively.
b. The reliability and content of signal interpretation is particularly susceptible to emotional and intellectual errors (both constant and sporadic), as well as physical degradation (decreased sensitivity because of sensory fatigue, etc). This problem of attaining and maintaining reliable and valid human interpretation of physical energy can be mitigated by adequate design engineering (e.g., information displays), personnel training (including practice and training support documents and materials), and on-the-job proficiency reinforcements, training and proficiency exercises, etc.).
ref. 28
"... the human operator has certain tendencies to distort the meaning of stimuli, or to assign a meaning that was not intended."
ref. 14

In prediction of future position, the human being has a strong bias to rely primarily on position, magnitude, or direction, and his perceptual judgments and motor responses are based only in small part on the higher derivatives of input signals.

The human being can estimate rate of change in input, but he is not particularly accurate in perceptual estimation or in the use of such estimates to determine movement.

\section*{Page A-20}

Man is quite limited in estimates of acceleration characteristics, and reverts to estimates of velocity (rate smoothing) when a constantly accelerating input is withdrawn from view.
ref. 26

The human being should not be required to estimate the acceleration characteristics or higher derivatives of input signals.

\section*{Page A-21}

\section*{Machine Capabilities and Limitations}
Machines are better able to apply deductive reasoning, such as recognizing stimuli as belonging to a general class (with specified characteristics). ..... ref. 15
Investigations of machine recognition of written or printed characters or spoken language show how primitive known electronic circuit principles are compared to the nervous system. ..... ref. 15

\section*{Man-Machine Performance Comparison}

\section*{MAN}

MACHINE
\begin{tabular}{ll} 
Man is able to use percep- & Machines have zero, or very \\
tual constancies; i.e., the & limited ability to use per- \\
spatial redundancy in the & ceptual constancies. \\
real world to "recognize" & \\
objects and places and & \\
thereby simplify otherwise & \\
very complex situations. & ref. 30
\end{tabular}
\begin{tabular}{ll} 
Man has high tolerance for & Machines are highly limited \\
ambiguity, uncertainty and & \begin{tabular}{l} 
by ambiguity and uncer- \\
tainty in the input.
\end{tabular}
\end{tabular}

Man can interpret an input Machines perform well only signal accurately even when in a clean environment. subject to distraction, high noise or message gap. ref. 19
\begin{tabular}{lll} 
Man may introduce errors by & Machines do not utilize & \\
identification, redinte- & these processes. & \\
gration or closure. & & ref. 19
\end{tabular}
\begin{tabular}{lll} 
Expectation or cognitive & Machines do not exercise & \\
set may lead an operator to & \\
see what he expects to see. & & ref. 19
\end{tabular}

\section*{Human Capabilities and Limitations}
Man is capable of integrating a large amount of infor- mation gathered from experience and bringing it to bear in a novel situation. ref. 19
Where the decision-making process is dependent upon maximum flexibility, assign it to the human in the system. ..... ref. 20
Where the decision involves the consideration of asituation context in which the weightings of the factorsinvolved vary in accordance with the context, assign itto the human in the system.ref. 20Where the decision-making couples active hypothesisformulation with inductive reasoning, assign it tothe human in the system.ref. 20
[Humans]... may be reprogrammed by self-instruction following input changes contingent on previous response (dynamic decision making). ..... ref. 11
When all the alternatives. cannot be specified in advance, true decision making is required and presumably this can only be done by human beings. ..... ref. 29
Humans will continue to be utilized in several roles which are essential in the decision-making process. These include:
a. estimation of the likelihood of future con-tingencies
b. assignment of values (or losses) to each possibleout come
c. establishment of a risk philosophy
d. recognition of indications of low-probabilityevents (or those which cannot be handled by theequipment)
e. review of selected actions before they are imple- mented (where the stakes are high). ..... ref. 25

Dynamic decision making requires successive reprogramming, at each step of the way, of the filtering conditions in short-term memory. Thus at each new stage the individual must provide his own instructions to establish the filtering set which tells him "what to look for." This kind of flexible reprogramming constitutes one of the most striking characteristics of human functioning, and one which distinguishes it markedly from that of most machines. In performing in this manner, the individual must have available in his long-term memory the variety of "filtering rules" necessary and relevant to the problem to be solved. Choosing among them is the major task accomplished by interpretation. The rules themselves then come into play in determining the particular filtering set employed in the next stage of the problem; they are self-instructions, or programs.
ref. 11

Humans can serve several useful functions (related to the interpretation of information) which are either beyond present computer capabilities, or else would require unrealistically complex equipment:
a. They can evaluate narrative information (such as intelligence reports) and "structure" or code it for machine processing, particularly if they are trained as specialists in limited areas of interest.
b. They can recognize unanticipated or low-probability events which their data-processing equipment has not been programmed to handle, particularly if they are alerted to the possibility that unusual events might occur. Further, they can attach confidence levels to their reports of these events.
c. They can recognize patterns of events (both
temporal and spatial) which would require com-
plex electronics to be recognized automatically. ref. 25

The ability to reason inductively, that is, to make generalizations from specific observations is perhaps man's greatest claim to fame. It is especially important in troubleshooting. But one of the reasons the inductive ability is so important is that the manual programing provisions (in the forms of maintenance instructions and graphic aids) are inadequate to the job, that is, they fail to provide adequate support for human deductions, especially in troubleshooting. Since the generalizatione mede by technicians ara of ofter lacorrect, the best test and check-aut situation pethap should require as little as possible of man's inductive ability.... (this does not necessarily mean to automate.) ref. 24

Man is an exceptionally good evaluative computer. From intermittent information on a PPI display he is able to estimate courses, velocities, times, and points of interception with considerable accuracy. Man is able to make decisions based on past experience and patterns of visual or auditory inputs. He is the only available computer able to solve problems by logical induction.
ref. 31
ref. 8

Man...learns to make decisions in the face of excess, missing, or unreliable information.

When estimates of conditions depend upon subjective or unanticipated factors that cannot be preprogrammed, men will be superior.

Generalized information processing and decision making should be performed by personnel where:
a. Pattern perception is important (especially where patterns may change in size, position, or energy configuration (types and strength levels) under different conditions.
b. Long-term storage of information is required.
c. Insight, discovery, or heuristic problem solving is required.
d. Decision making and learning in a complex changing situation are required.
e. Ability to improvise and adopt flexible procedures is important and, within the state of the art, cannot be built into a machine program.
f. Number of low-probability events which might occur is high and the cost or capacity of machine programing is exceeded by the requirement.
\(g\). Inductive reasoning is required, i.e., a requirement exists for generalizations to be made from the specific events.

This suggest that a military-information-processing system which must cope with relatively unreliable data might profitably use human operators as transducers for probabilities. These probabilities could then be entered into a computer which would compute the optimal course of action. In one very important sense, man is far more reliable than computers: once he has learned to perform a task correctly, he does not usually repeat the same error, as does a computer
with a broken part.

Man has considerable flexibility in dealing with unique situations for which all the relevant decision-making factors cannot be anticipated in advance.

In sensing, extrapolating, and decision-making the computer may be given the primary function, but the man should be available as backup. In many such applications, it may be more economical and efficient to assign the entire function to the man.

In general, human beings are superior to existing computers in making decisions for three reasons:
a. they are capable of inductive reasoning
b. they are able to make inferencea from one set of conditions to another, and
c. they are capable of making decisions in situations which they have not previously encountered.

In performing decision-making tasks, the man may not treat the total output of his information source equally. He may select and reject various incoming messages, and he adds his own evaluation to what has already been done; his criteria may be different from and superior to those of the intermediate processor, since he is likely to have overlapping information from a greater variety of sources.
ref. 26
ref. 26
```

ref. 26

```
ref. 26
ref. 26
ref. 26

\section*{Machine Capabilities and Limitations}
```

Where the decision-making process is dependent upon
complex procedures requiring a large number of
differentlations or integrations, assign it to the
computer.
Where the decision-making process is dependent upon
infallible memory with its precise source accurately
tagged (and ignoring display potential), assign it to
the computer.
Where the decision involves contextless deductive
reasoning, assign it to the computer.
ref. 20
Where the decision involves inductive reasoning of a straightforward nature, assign it to the computer.
ref. 20
Where the decision-making involves prediction of the future and if the weightings of the variables involved are known, assign it to the computer.

Specialized information processing and decision making should be performed by equipment where:
a. Deductive logic can be programmed.
b. Speed and amount of memory search or entry (storage) is an extensive requirement.
c. Highly complex computations or logical operations are involved.
d. Short-term storage and retrieval of large amounts of data is required.
e. System functioning requires extremely short time lags between scheduled events.
f. Many routines, channels, and memory areas must be utilized simultaneously (parallel operation).
g. A high degree of repetitiveness and routine is involved in the sequence of tasks or events.
h. Events are unambiguous and probable but can be expected to occur only infrequently, e.g., as in monitoring of equipment readiness.

1. Reduction of the over-all amount of work load and activity for personnel can be expected and provided within system cost parameters.
[^2]
Man-Machine Performance Comparison

MAN . MACHINE

Man can make inductive de-	Machines have little or
cisions in novel situations,	no capability for induction
has the ability to gener-	or generalization.
alize.	

Man does not always follow	Machines will always follow
an optimum strategy.	the strategy which is built
into them.	

> Man will require a review or rehersal period before making decisions based on items in memory.

Machines go directly to the item in memory required for the decision.
Humans excell in the ability to store large amounts
of information for long periods and to remember
relevant facts at the appropriate time.

Humans are generally better in their abilities to	
retrieve pertinent information from storage (recall),	
frequently retrieving many related items of infor-	
mation; but reliability of recall is low.	

Men have greater accessibility to items in storage since they can get at a single memory in many different ways.
ref. 4

Man has a very limited short term (buffer) storage capacity; however once learning has taken place man is usually able quickly to call up the desired information or to reinstate a skill whenever it is needed.
ref. 9

Short-term memory imposes certain limitations on the man's capacity for processing information, and may introduce various distortions.
ref. 13

Memory. Man is reasonably efficient in tasks requiring long-term memory.

```
ref. 5
```

The storage capacity of the human nervous system is larger than the capacity of all existing automata. The access time of this human storage of information is normally shorter than the access time of comparable mechanical storage devices.
ref. 22

Man has good long-term memory for generalized experience, but rather poor immediate memory for most sensory functions. This is especially so in audition. His access time is slow, compared with that of a computer, but he is able to recall generalized patterns of previous experience to solve immediate problems. As yet, no computer can do this.

Abstract

An essential feature of all "functions of intelligence" is the storage of information. In man we have to distinguish two different principles of storage: shortterm storage, e.g., applied in mental arithmetic for storing provisional results, and long-term storage, e.g., for learning languages, writing, or manual skills etc.

ref. 22

Man can recover memories in many ways, simply by "searching" for them; machines, which can reproduce material that has been stored for a long time with speed and accuracy, cannot produce it without specific instructions as to its exact location.
ref. 26

Man is able to store large amounts of information, and although his recall is often imperfect, he is able to make inferences upon the basis of past experience about the likely outcomes of given courses of action.

Many computer experts agree that the most important respect in which men excel computers is in the accessibility of the items in storage. Men can get at a single memory in many different ways; in particular, they can recover memories on the basis of similarity alone. Computers, by contrast, have no such efficient cross-indexing. If they did, it would be possible to write programs which rely on the computer to locate and produce any item in memory without specific instruction concerning where that item is. At present, no such procedure is possible.

Summary of man's information storage capability:
Limited memory capacity with some inaccuracies. Slow. Storage not permanent. Number of channels that can record simultaneously limited and they will affect (interfere) with each other, though occasionally this is beneficial for augmenting a weak signal.
ref. 2

Long-term storage and recall of meaningful material of considerable contextual complexity should be performed by personnel when:
a. Retention of abstract and symbolic material and its selective recall for a wide variety of applications is required.

Page A-32

```
    b. Modification of retained material in the
        direction of new learning about a constantly
        changing environment is required
    c. Judgment in situations is required where all the
        relevant factors cannot be clearly specified in
        advance.
    d. Self-modifying behavior based upon retention of
        experienced events is required.
    ref. 28
One of man's most serious limitations in handling infor-
mation arises from his very limited buffer storage (or
immediate memory) capacity.
ref. 8
The speed and accuracy of human recall is often poor. ref. 26
```


Machine Capabilities and Limitations

Computers excel men in long-term storage of immense
amounts of information, and can reproduce it extremely
accurately.

Machines are generally better in the abilities to store coded information quickly and in substantial quantity (for example, large sets of numerical values can be stored very quickly).

```
Storing and recalling large amounts of precise data
for short periods of time. Especially in the computer
field, there are requirements for short-term storage of
information ("scratch pad" data), followed by complete
erasure of the data in preparation for another task.
Machines excel at this; humans not only have difficulty
memorizing large amounts of information, but their recall
is often spotty, and they have difficulty in completely
erasing information in short-term storage.
ref. 24
```

Storage of large amounts of data and recall for short
periods of time should be performed by equipment when:
a. Information is low in meaningfulness to the human, even though it may ultimately be useful to him.
b. Encoding or identification for library search can be simpler than the symbolic processes utilized by humans for the purpose of recall.
c. Rapidly committing large amounts of information to storage is required, since humans often cannot recall information and apparently cannot completely erase learned material -- a factor which sometimes creates considerable unreliability and lack of validity in operator performance.
ref. 28

Summary of machine information storage capability:
Able to accurately and rapidly store vast amounts of data for long periods of time. Can record on many channels simultaneously without interference. Does not process data unless instructed to do so. ref. 2
Man-Machine Performance Comparison
MAN MACHINE
Man has excellent long term Machines can’have this memory for related events. property, but are very expensive. ref. 19
Man is not well adapted to Computers are built to high speed accurate search do just this. of large volumes of infor- mation. ref. 19
Man has extremely limited Machines may have as much short-term (buffer) memory for factual material. buffer memory [as] can be afforded. ref. 19
Limitation to rule storage Limits of rule storage not known. ("logic") quite high. ref. 11
Man has the ability toimprovise and exercisejudgment based on longterm memory and recall.Machines do not possessthese properties; theyare best at routine func-tions.ref. 19

Human Capabilities and Limitations

```
Man has the capability to act as an intermittent servo in the performance of a number of different systems or equipments.
ref. 19
```

Man is better suited to situations where alternative modes of operation are likely to be required.
ref. 19

Man has the capability for tracking through clutter in a wide variety of situations.
ref. 17

Human controllers will probably continue to be replaced in many systems by automatic feedback control systems; however he can develop very high levels of skill.
ref. 9

The responsibility for test system control is to be given to the operator, so that he and the system (i.e., automatic checkout equipment) can function most effectively.
ref. 6

Man can guide and control equipment performing constructive operations to a degree that cannot be done any other way, since constant modifications and adfustments in the general method of performing any operation will be required to meet the conditions that prevail.
ref. 1

Intermittent operation of equipment is possible if man is present as a controller and actuator through time to make the on-off decisions.

These motor activity capabilities enable man to act upon the environment by manipulating controls, changing his position and location, transmitting information verbally to other men, and by lifting and moving objects. As in the case of man's data sensing and data processing capabilities, the motor capabilities of man are rarely used in isolation.

In this role, man also has his capabilities and his limitations. He can push buttons and pedals, turn knobs, throw switches, and operate various other kinds of controls, provided such controls do not impose tasks that exceed his capabilities. Some of these can be listed as follows:
a. The forces that human operators can exert are limited.
b. Human operators are relatively slow in moving controls, as compared with machines. Also, compared with machines, human movements involve considerable time delay between the time the decision is made to move the control and the time the movement is initiated. Thus, when controls should be operated with little delay and with great speed, machines are superior to human beings.
c. Man is also limited in the kinds of movement he can make. He can reach in some directions and not in others, and he can reach or extend his limbs only for limited distances.
d. The precision with which man can apply a given force to a control is also limited. If asked to maintain a certain pressure on a control, the actual pressure will oscillate around the desired pressure and will approximate the desired pressure with some average (or constant) error.
e. The time during which man can apply a force is limited.
f. Man, as a controller, is easily overloaded. ref. 16

Man can talk, push buttons, use hand cranks or joysticks. He can point, write, push pedals, and so on. All of these outputs are usable and have been used in man-machine systems. It must be remembered that his motor performance characteristics vary considerably, depending upon the mode of response.
ref. 31

As task-induced stress (increased input frequency) is introduced, the man generally reduces the weight assigned to higher derivatives of the input signal, and in this sense regresses toward a lower level of control.
ref. 26

As the man is required to respond more rapidly or at the same rate to a greater number of stimuli, performance accuracy decreases proportionately.
ref. 26
Human beings tend to react intermittently rather than continuously to stimuli, even if stimuli are continuous rather than discrete. For certain continuously changing stimuli it appears that human responses are made at the rate of about two per second.
ref. 26.
Generally, two-way conmunication between the men should be minimized, so as to reduce the possibilities of error However, there is some feeling on the part of human factors specialists that completely eliminating such communication may have an adverse effect, since it tends to "dehumanize" the situation.

Machine Capabilities and Limitations

When the identifications involved in tracking can be reduced to simple inputs varying in a single dimension, it is obvious that machine performance can easily be made to exceed that of a human operator.

```
ref. ll
```

While man possesses many alternative modes of operation, when his size and weight are considered in relation to machines, for most specific modes of operation machines outstrip men. Machines can perform routine repetitive tasks without decrements due to boredom and fatigue. They can perform many different things simultaneously without man's physiological limitations. Machines can be built to respond much more quickly to control signals and can apply great forces smoothly and precisely. The ability of man to make control movements is limited in both power and speed. One advantage of using man's motor capability however, is his ability to change both position and location with relative ease.
ref. 2

Man-Machine Performance Comparison

MAN
MACHINE

Generally not good at	Good tracking charac-
tracking although may be	teristics easy to obtain
satisfactory where situation	for limited set of require-
requires frequent repro-	ments, etc.; to track. well
gramming; can change	in all conditions consid-
tracking properties to pro- erable complexity required.	
duce best attainable system	Properties fixed in each
performance in any situ-	range.
ation. Is best at position	
tracking with changes under	
3 radians per second.	

ref. 30

1. Amorelli, D.; Peters, B. G.; and Celentano, J. T.: Man and Mission Success. (DDC No. AD457785), Space and Information Systems Division, North American Aviation, Inc., Feb. 1964.
2. Anon.: Human Factors in the Development of the WS-107A-2 (TITAN) Inertial Guidance System, II. Functions Analysis Criteria. PRA Report 60-3, Psychological Research Associates, Inc., Prepared for AC Spark Plug Division, GMC, Feb. 1960.
3. Birmingham, H. P.; and Taylor, F. V.: A Human Engineering Approach to the Design of Man-Operated Continuous Control Systems. NRL Report 4333, 1954.
4. Edwards, W.: Men and Computers. Psychological Principles in System Development, R. M. Gagne, ec., Holt, Rinehart and Winston, 1962, pp. 75-114.
5. Ellis, David O.; and Ludwig, Fred J.: Systems Philosophy. Prentice-Hall, Inc., 1962.
6. Firstman, S. I., et al.: An Omnibus of Briefing Papers on Analysis of Automatic Checkout Equipment and Aids to its Design. (Contract No. AF 49 (638)-700), The Rand Corp., June 1961.
7. Firstman, Sidney I.; and Jordan, Nehemiah: Operational and Human Factors in Planning Automated Man-Machine Checkout Systems. Memorandum, RM 2835-PR, 1962.
8. Fitts, Paul M.: Functions of Man in Complex Systems. Aerospace Engineering, vo1. 31, January 1962, pp. 34-39.
9. Fitts, Paul M., ed.: Notes on Human Engineering Concepts and Theory: Roles for Men in Systems. University of Michigan, June 18-29, 1962.
10. Foge1, Lawrence J.: Biotechnology: Concepts and Applications. Prentice-Hall, Inc., 1963.
11. Gagne, R. M.: Human Functions in Systems. Psychological Principles in System Development, R. M. Gagne, ed., Rinehart and Winston, 1962, pp. 35-74.
12. Gruber, A.: Information Sensing and Processing. Ch. 3 of Engineering Psychology and Human Factors in Design. ElectroTechnology, May 1961; pp. 112-116.
13. Harmon, Francis L.; and King, Bert T.: Vulnerability of Human Performance in Conmunications. Technical Bulletin 61-1, Bureau of Naval Personnel; Jan. 1961.
14. Kidd, J. S.: Human Tasks and Equipment Design. Psychological Principles in System Development, R. M. Gagne, ed., Holt, Rinehart and Winston, 1962, pp. 159-184.
15. McCormick, Ernest J.: Human Factors Engineering. Second ed. of Human Engineering, McGraw-Hill Book Company, 1964.
16. Morgan, Clifford T., et al.: Human Engineering Guide to Equipment Design. McGraw-Hill Book Company, Inc., 1963.
17. Munger, M. R.: Identification and Analysis of Personnel Functions. Ch 2 of Human Factors Methods for Systems Design, J. D. Folley, Jr., ed., (DDC AD 232646), pp. 21-42.
18. Pickrel, E. W.: Personnel Requirements. Ch 5 of Space Logistics Engineering, K. Brown; and L. D. Ely, eds., John Wiley \& Sons, Inc., 1962, pp. 136-160.
19. Price, Harold E.; Smight, Ewart E.; and Behan, R. A.: Utilization of Acceptance Data in a Descriptive Model for Determining Man's Role in a System. NASA CR-95, 1964.
20. Siegel, Arthur I.: Applied Psychology Takes Kinks Out of Advanced Weapons Systems. Industrial Laboratories. 1959.
21. Sinaiko, H. W.; and Buckley, E. P.: Human Factors in the Design of Systems. NRL Report 4996, Naval Research Lab., 1957.
22. Steinbuch, K.: Man or Automation in Space. Basic Environmental Problems of Man in Space, Hilding Bjurstedt, ed., SpringerVerlag, 1965, pp. 473-491.
23. Swain, Alan D.: Human Factors in Design of Reliable Systems. Proceedings-Tenth National Symposium on Reliability and Quality Control, 1964, pp. 250-259.
24. Swain, Alan D.; and Wohl, Joseph G.: Factors Affecting Degree of Automation in Test and Checkout Equipment. Dunlap and Associates, Inc., Prepared for the Rand Corporation, D\&A-TR-$60-36 \mathrm{~F}, 1$ March 1961.
25. Tolcott, M. A.; and Chenzoff, A. P.: Factors in Decision Making. Ch. 4 of Engineering Psychology and Human Factors in Design. Electro-Technology, May 1961, pp. 116-119.
26. USAF, Air Force Systems Command: Personnel Subsystems, AFSC Design Handbook DH 1-3, January 1969.
27. Van Cott, Harold P.; and Altman, James W.: Procedures for Including Human Engineering Factors in the Development of Weapon Systems. WADC TR 56-488 (DDC AD 97305), Wright Air Development Center, WPAFB, October 1956.
28. Wayman, V. O.; and Jones, D. B.: The Bureau of Naval Personnel New Developments Human Factors Program. Report No. ND 64-51 (Contract No. Nonr 3949 (00)), Operations Research, Inc., Feb. 1964.
29. Westbrook, C. B.: Pilot's Role in Space Flight. Report 252 (ASTIA AD No. 243015), North Atlantic Treaty Organization, September, 1959.
30. Williams, A. C., et al.: A Program of Human Engineering Research on the Design of Aircraft Instrument Displays and Controls. Report No. STAVID 54-6, (Contract AF 33(616)-2219), Univ. of Illinois, Aviation Psychology Lab., 20 Dec. 1954.
31. Woodson, Wesley E.; and Conover, Donald W.: Human Engineering Guide for Equipment Designers. Second ed., University of California Press, 1964.
APPENDIX B
MAN-MACHINE TASK VS CAPABILITIES MATRIX
The following pages are a tabulation of the basic man-machine per-formance capabilities relevant to each generic air traffic control task.An X in a row-column intersection indicates that the performance capabilityis required to accomplish the task. The procedure for deriving this matrixis described in Section 3.3 of the report.
The key to the performance capability abbreviations is as follows:
MO - Monitoring
SE - Sensing
IP - Information Processing
IN - Interpreting
DM - Decision Making
SR - Information Storage and Retrieval

Page B-2

Page B-3

Page B-4

Page B-5

Page B-6

$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	TASK TITLE	PERFORMANCE CAPABILITY				
		MO	SE	IP	IN	
4.3 .2	Determine Responsibility to Modify the Flight Plan					
4.3.3	Inform 'Pilot of Unacceptable Flight Plan			X		
4.3 .4	Compile Modified Flight Plan			X		
4.4.1	Receive and Enter Pilot's Response					
4.4 .2	Cancel Flight Plan			N		
4.4.3	Designate Responsible Jurisdictions					
4.4 .4	Designate Communication Links between ATM and Aircraft				N	
5.0	ISSUE CLEARANCES AND CLEARANCE CHANGES					
5.1 .1	Determine if Identification Code Assignment is Required				x	
5.1.2	$\begin{aligned} & \text { Compare Flight Progress with Clearance Limit } \\ & \text { and EFC Time } \\ & \hline \end{aligned}$			x	1	
5.1 .3	Determine Pilot Intentions Following Missed Approach				\square	
5.2 .1	Assign Identification Code			x		
5.2 .2	Determine Clearance Tolerances					

Page B-7

Page B-8

Page B-9

Page B-10

Page B-11

$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	TASK TITLE	PERFORMANCE CAPABILITY			
		MO	SE IP	IN DM	SR
8.2.4	Transmit Performance Change Message to Pilot				
8.2 .5	Determine Performance Change Status				
9.0	CONTROL SPACING OF AIRCRAFT				
9.1 .1	Determine Identity and ETA of Arriving Aircraft				Y
9.1 .2	Determine Identity and ETD of Departing Aircraft		V		8
9.1 .3	List Arriving and Departing Aircraft and ETA/ETD				0
9.2.1	Determine Airport Capacity				
9.2 .2	Analyze Predicted Schedule for Alternating Periods of Excess Demand and Slack				
9.3 .1	Analyze Temporal Distribution of Arrivals and Departures			-	
9.3.2	Allocate Blocks of Time for Arrivals and Departures				
9.4.1	Compare Predicted Arrival and Departure Times with Runway Schedule				V
9.4 .2	Change ETA's and ETD's to be Compatible with Runway Schedule				
9.5 .1	Select Sequence/Schedule Change to be Implemented				

Page B-12

$\begin{aligned} & \text { TASK } \\ & \text { NO. } \\ & \hline \end{aligned}$	TASK TITLE	PERFORMANCE CAPABILITY				
		MO	SE	IP IN	DM	
9.5 .2	Hypothesize Performance Change Required to Implement Desired Sequence/Schedule					
9.5.3	Check Proposed Performance Change for Predicted Conflict					
9.5.4	Assess Control Implications of Performance Required to Implement Sequence/Schedule Change					
9.5 .5	Submit Performance Changes within Existing Flight Plan to Clearance Function			X		
9.5.6	Propose Revised Flight Plan to Implement Sequence/Schedule Change					
9.5 .7	Submit Revised Flight Plan for Approval			N		
11.0	PROVIDE AIRCRAFT GUIDANCE					
11.1 .1	Determine Desired Position			N		
11.1 .2	Determine Requirements for Further Vectoring					
11.2 .1	Measure Course and Distance					
11.2 .2	Compute Time Interval					
11.2 .3	Compute Ground Speed			N		
11.2 .4	Compute Altitude Difference			N		

Page B-13

Page B-14

Page B-15

Page B-16

$\begin{aligned} & \text { TASK } \\ & \text { NO. } \\ & \hline \end{aligned}$	TASK TITLE	PERFORMANCE CAPABILITY				
		MO	SE	IP	IN DM	SR
14.0	MAINTAIN SYSTEM RECORDS					
14.1.1	Detect Information Requiring Operational Report					
14.1 .2	Retrieve Applicable Operational Report Format	-	-	-	X	-
14.1 .3	Enter Detected Information		-	N		
14.1 .4	Determine Necessity for Additional Information					
14.1 .5	Retrieve Additional Information			N		
14.2.1	Classify Data Elements					
14.2.2	Assign Appropriate Identifiers				\times	
14.2.3	Determine if Data Transform/Reformat is Required					
14.2 .4	Trans form/Reformat Data Element		-	N	N	
14.2 .5	Enter Data Element into Storage	-				
14.3 .1	Determine if Report is Available					
14.3.2	Retrieve Format					8

Page B-17

$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	TASK TITLE	PERFORMANCE CAPABILITY			
		MO	SE	IP ${ }^{\text {IN }}$ IN DM	R
14.3 .3	Develop Format				
14.3.4	Retrieve Required Data				
14.3 .5	Analyze Data				
14.3 .6	Compile Report				
15.0	PROVIDE ANCILLARY AND SPECIAL SERVICES				
15.1.1	Compile/Update Description of Special Service Required				
15.1.2	Monitor Progress of Service				
15.2.1	Determine Requirement for Special Flight Plan Priority				
15.2.2	Establish Area of Restriction				
15.2.3	Determine Guidance Service Required				
15.2.4	Determine Special Separation Minima				
15.2 .5	Determine Advisories Required				
15.2 .6	Determine Necessity for Issuance of NOTAM(s)			N	\square

Page B-18

$\begin{gathered} \text { TASK } \\ \text { NO. } \\ \hline \end{gathered}$	TASK TITLE	PERFORMANCE CAPABILITY				
		MO	SE	IP IN	DM	SR
16.0	PROVIDE EMERGENCY SERVICES					
16.1 .1	Determine Adequacy of Emergency Description					
16.1 .2	Request Additional Required Information					
16.1 .3	Compile Description of Emergency					
16.2.1	Determine Required Ground Support Assistance			N		
16.2.2	Determine Assistance Required from Other Aircraft					
16.2.3	Determine Aircraft to Provide Assistance					
16.2.4	Issue Instructions to Aircraft Providing Assistance		-			
16.2 .5	Determine Required Technical Instructions to Aircraft in Emergency Situation					
16.2 .6	Determine Emergency Flight Plan			N		
16.2.7	Determine Requirement for Use of Emergency Communication Link			N		
16.2.8	Inform Pilot of Change to Emergency Frequency Link			V		

Page B-19

Page B-20

$\begin{gathered} \text { TASK } \\ \text { NO. } \end{gathered}$	TASK TITLE	PERFORMANCE CAPABILITY			
		MO	SE	IP IN DM	SR
17.2.3	Determine Required Change to the Data Base Item				
17.2.4	Purge Affected Data Base Item				χ
17.2.5	Format New Data Base Item				
17.2 .6	Store Data Base Item				X
17.3.1	Determine Data Base Item Affected				
17.3.2	Retrieve Affected Data Base Item				8
17.3.3	Determine Required Change to the Data Base Item				
17.3.4	Purge Affected Data Base Item				-
17.3.5	Format New Data Base Item			N/	
17.3.6	Store Data Base Item				8
17.4.1	Determine Data Base Item Affected			Nx	
17.4.2	Retrieve Affected Data Base Item				\checkmark
17.4.3	Determine Required Change to the Data Base Item				

Page B-22

Page B-23

APPENDIX C
TASK PERFORMANCE CAPABILITY RATINGS

This appendix contains a complete listing of the performance capobility scores assigned by individual raters for each air traffic management task*. Each page is a tabulation of all scores for a single rater, arranged in the following format:

PERFORMANCE CAPABILITY \longrightarrow

Entries in the performance capability columns are the scores assigned by the rater, encoded as follows:
$000 \quad$ No rating requested and none assigned
001-099 Rating requested and assigned
101-199 No rating requested, but rater believed performance capability was relevant to the task and so assigned a rating

200
Rating requested, but rater declined to rate the task

Therefore, within each three-digit group, the first digit indicates the condition by which the score was assigned, and the last two digits are the score itself.

[^3]

Page C-4

Abstract

Page C-5

Abstract

[^4]

 3

Page C-7

Page C-8

Abstract

 GORO日

 No

Page C-9

RATER NO. 9
INCOMPLETE RATINGS-
NOT USED IN DATA ANALYSIS

[^5]

岛心

[^6]
Page C－12

Abstract

[^7]

\simeq
\cdot

[^8]RATER NO. 14
INCOMPLETE RATINGS-
NOT USED IN DATA ANALYSIS

[^9]

 すN On N～N No No

 ずo

Page C-18

 $\stackrel{\circ}{8}$

 No

Reproduced from
best available copy.

 $\stackrel{y}{2}$

 $\stackrel{\circ}{2}$

Page C-23
RATER NO. 22
INCOMPLETE RATINGS-
NOT USED IN DATA ANALYSIS

[^10]
Page C-25

Abstract

Abstract

足

옹ㅇㅇㅇㅇㅇ 눙뇽옹品身品 공옹옹 ㅇㅇㅇㅇㅇㅇ $888 \frac{0}{5}$ 웅응슷不品品品

88\％

 ถัた

농응응 － 1 人口 능옹응

 8858 동홍 88888 8898 | 응응 |
| :--- |
| 응 |
| 0.00 |
| 0 |
| 0 |

N
 농앵응

[^11]

 צ゙ロ

 $\dot{8}$

 กัゼ̊
 ลว

융융흉

ำมก
잉
8888
오여̊ㅇ

－
ํㅇㅇํ
（18． 2 \％\％ib

 88\％®88
 ＋

		cs
	1	\cdots
	~	>
	0	<
	\geq	,
	ー	<
	\vdash	\geq
융	¢	<
	\bigcirc	
\bigcirc	1	<
号	-	\leftarrow
$\stackrel{\square}{8}$	ய	\square
	-	
	믈	z
	E	\square
	-	$ص$
	\geq	ш
	\square	us
		-
		\bigcirc
		\bigcirc

Abstract

[^12]RATER NO. 32
INCOMPLETE RATINGS-
NOT USED IN DATA ANALYSIS

APPENDIX D

dISTRIBUTION OF RATER SCORES

Table $D-1$ on the following page shows the distribution of the raw scores of individual raters. The scores, which ranged from 1 to 99 , have been grouped in five-point intervals for convenience of presentation.

The combined distribution of raw scores for all raters is shown in Figure D-1. For comparison, the distribution of converted scores is plotted in Figure D-2.

Figure D-3 represents a different mode of aggregation. For this presentation, the scores are averaged within each task and the geometric mean score provides the abscissa and frequency of tasks provides the ordinate.

The outcome of concern is that both conversion (normalization) and the use of the geometric mean of the raw scores have an effect of regularizing the distribution (smoothing, adding symmetry, and eliminating skewness), all of which tend to bring the score distributions into better conformity to basic statistical models.

Page D－2
table D－1 distribution of raw scores by rater

枵	
\％	
N	
気	
－	
O	
$\begin{aligned} & \text { in } \\ & \stackrel{n}{4} \\ & \hline \end{aligned}$	
－	
$\begin{aligned} & \stackrel{?}{4} \\ & \frac{1}{\nabla} \end{aligned}$	
O	
$\begin{array}{\|c\|} \hline \begin{array}{c} n \\ \vdots \\ \hline \end{array} \\ \hline \end{array}$	
	～すむさ
$\stackrel{\stackrel{1}{\sim}}{\sim}$	
$\stackrel{\sim}{\sim}$	
$\begin{aligned} & 0 \\ & \stackrel{9}{6} \\ & \hline 1 \end{aligned}$	
$\stackrel{8}{-}$	
$\begin{array}{l\|l\|l\|l\|l\|l\|} \substack{\dot{x}} \end{array}$	

Page D-4

Page D-5

APPENDIX E
 automation indices and task rankings

Table E-1 is a serial listing of tasks with the values and rank order obtained by calculation of the automation index on the basis of geometric mean of raw scores, arithmetic mean of raw scores and arithmetic mean of converted Z-scores.

Table E-2 shows the tasks by rank order of the automation index based on the geometric mean. The corresponding ranks obtained from calculation of the automation index by mean raw score and mean converted Z-score are listed beside each for comparison.

Page E-2

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS

TASK NO.	GEOM. MEAN ${ }^{1}$		MEALL RAW SCORE ${ }^{\text {a }}$		MEAid 2 -SCORE ${ }^{3}$	
	AI	RAlk ${ }^{4}$	AI	RAilk ${ }^{4}$	AI	RAink ${ }^{4}$
1.1 .1	52.1	83	59.5	95	10.3	35
1.1 .2	40.7	145	50.8	148	9.1	47
1.1 .3	42.0	142	52.3	139	9.1	47
1.2.1	44.2	131	53.8	133	9.5	43
1.2.2	54.9	67	62.7	69	11.0	28
1.3 .1	42.6	139	52.7	138	9.4	44
1.3 .2	52.1	83	60.4	89	10.3	35
1.3 .3	36.7	156	51.3	144	9.0	48
2.1 .1	45.6	122	58.0	105	9.6	42
2.1.2	47.8	111	58.0	105	9.8	40
2.1 .3	45.1	125	55.8	121	9.6	42
2.1 .4	44.6	128	53.9	132	9.0	48
2.1 .5	40.8	144	51.5	143	8.6	52
2.1.6	53.6	75	63.9	63	11.1	27
2.2.1	58.5	47	67.1	40	11.1	27
2.2.2	56.2	59	65.0	55	10.9	29
2.2 .3	58.4	48	66.6	44	11.2	26
2.2 .4	59.7	42	65.5	51	11.7	21
2.3.1	53.6	75	62.5	71	11.3	25
2.3.2	49.9	97	59.4	96	10.3	35
2.3 .3	60.2	39	66.5	45	11.5	23
2.3.4	61.9	34	68.3	38	12.1	17
2.3.5	66.5	20	70.5	31	12.0	18
3.1 .1	37.3	155	53.1	136	9.5	43
3.1 .2	25.5	169	40.6	160	6.8	64
3.1 .3	25.7	168	39.3	164	6.5	66
3.2 .1	46.2	119	58.7	100	10.6	32
3.2 .2	46.5	117	60.9	85	11.1	27
3.2 .3	49.4	99	61.1	83	10.9	29
3.3.1	44.7	127	55.6	123	9.7	41
3.3.2	39.8	149	50.9	147	9.0	48
3.3 .3	19.4	175	36.7	166	6.3	67

See notes at the end of table, page E-10.

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	GEOM. MEAN ${ }^{1}$		MEAN RAMV SCORE ${ }^{2}$		MEAII Z-SCORE ${ }^{3}$	
	AI	RAINK 4	AI	RAIIK ${ }^{4}$	AI	RAIJ ${ }^{4}$
4.1 .1	40.4	146	54.4	130	9.6	42
4.1 .2	52.3	81	63.9	63	11.0	28
4.2 .1	39.1	152	51.6	142	8.8	50
4.2.2	45.2	124	56.6	117	9.8	40
4.2 .3	48.8	104	59.7	93	10.2	36
4.2 .4	47.1	114	56.1	119	9.6	42
4.2 .5	40.3	147	51.6	142	8.8	50
4.2 .6	44.7	127	56.8	115	9.8	40
4.2 .7	32.1	165	44.7	155	7.3	60
4.2.8	37.9	154	51.0	146	9.0	48
4.2 .9	40.3	147	51.0	146	8.6	52
4.2 .10	43.9	132	55.5	124	9.5	43
4.2 .11	50.4	94	61.3	81	10.8	30
4.2 .12	24.2	171	39.8	162	6.6	65
4.2 .13	34.5	159	47.9	151	8.3	55
4.3 .1	52.7	78	61.0	84	10.6	32
4.3.2	40.2	148	51.8	141	8.9	49
4.3 .3	22.3	173	39.9	161	7.1	62
4.3.4	45.7	121	55.4	125	9.5	43
4.4 .1	27.3	166	42.5	158	7.5	58
4.4.2	18.5	176	37.9	165	6.2	68
4.4.3	48.0	109	58.1	104	10.0	38
4.4.4	43.8	133	54.4	130	9.2	46
5.1 .1	'44.7	127	56.0	120	9.7	41
5.1 .2	54.5	70	65.1	54	11.3	25
5.1 .3	39.6	150	53.9	132	9.6	42
5.2.1	56.2	59	64.2	62	10.6	32
5.2.2	51.4	88	60.5	88	11.0	28
5.2 .3	59.2	45	66.0	47	12.0	18
5.2 .4	55.6	61	64.4	60	11.4	24
5.3.1	55.5	62	65.4	52	11.6	22

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	GEOM. MEAN ${ }^{1}$		MEAL RAK SCORE ${ }^{2}$		MEAid Z-SCORE ${ }^{3}$	
	AI	RAIVK ${ }^{4}$	AI	RAnK ${ }^{4}$	AI	RAIIK ${ }^{4}$
5.3.2	24.4	170	45.4	154	8.1	56
5.3 .3	36.0	157	51.2	145	9.3	45
6.1 .1	68.6	13	75.9	9	13.0	8
6.1 .2	71.0	8	77.9	4	13.3	5
6.1 .3	53.7	74	64.9	56	11.5	23
6.1 .4	34.0	161	52.0	140	9.2	46
6.1 .5	44.3	130	54.5	129	9.2	46
6.2 .1	50.4	94	61.0	84	10.6	32
6.2 .2	56.3	58	64.4	60	11.1	27
6.3 .1	55.5	62	67.9	39	11.9	19
6.3 .2	77.3	1	79.8	1	13.8	1
6.3 .3	76.5	2	78.3	3	13.5	3
6.4.1	58.5	47	65.5	51	11.5	23
6.4.2	62.8	31	72.7	19	13.2	6
6.4 .3	58.5	47	69.1	37	12.6	12
6.4 .4	50.4	94	61.2	82	10.7	31
6:4.5	43.4	135	55.1	127	9.7	41
6.4 .6	49.1	101	60.1	91	10.4	34
6.4 .7	50.0	96	60.9	85	10.7	31
7.1 .1	46.3	118	58.6	101	10.4	34
7.1 .2	70.1	9	74.6	11	12.8	10
7.1 .3	53.9	72	64.4	60	11.2	26
7.1 .4	62.8	31	73.9	15	13.1	7
7.1 .5	61.5	35	70.4	32	12.5	13
7.2 .1	52.3	81	62.2	74	11.1	27
7.2 .2	73.5	4	76.2	8	13.4	4
7.3 .1	59.8	41	67.9	39	12.1	17
7.3.2	68.6	13	73.4	16	12.5	13
7.3 .3	66.9	18	71.8	26	12.2	16
7.4 .1	60.8	37	69.3	36	12.2	16
7.4 .2	23.5	172	40.6	160	7.4	59
7.4 .3	42.0	142	55.1	127	9.9	39

Page E-5

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	GEOM MEAN ${ }^{\text {l }}$		MEAI RAW SCORE ${ }^{2}$		MEAII Z-SCORE ${ }^{3}$	
	AI	RAIIK ${ }^{4}$	AI	RAIIK ${ }^{4}$	AI	RAIIK ${ }^{4}$
7.4.4	53.3	76	63.5	65	11.2	26
8.1 .1	57.3	53	64.5	59	11.4	24
8.1 .2	65.2	25	72.5	21	12.9	9
8.1 .3	66.2	21	71.7	27	12.8	10
8.1.4	65.6	24	72.8	18	13.0	8
8.1 .5	71.4	7	77.0	6	13.7	2
8.1 .6	72.4	5	77.1	5	13.7	2
8.1 .7	68.8	12	74.5	12	13.3	5
8.1 .8	62.1	33	70.8	30	12.5	13
8.1 .9	52.4	80	62.6	70	10.9	29
8.2 .1	58.0	50	66.8	42	11.9	19
8.2 .2	67.6	16	72.8	18	13.1	7
8.2 .3	54.8	68	62.3	73	10.6	32
8.2.4	42.6	139	51.3	144	9.0	48
8.2 .5	49.1	101	59.8	92	10.6	32
9.1 .1	54.9	67	66.4	46	11.6	22
9.1 .2	53.7	74	64.6	58	11.2	26
9.1 .3	63.3	29	69.7	33	12.0	18
9.2.1	\checkmark		NOT RATED			\rightarrow
9.2 .2	51.3	89	62.1	75	11.2	26
9.3 .1	54.9	67	63.9	63	11.8	20
9.3 .2	47.3	113	58.8	99	10.7,	31
9.4.1	62.1	33	69.4	35	12.2	16
9.4.2	62.6	32	69.7	33	12.3	15
9.5.1	51.2	90	61.4	80	11.2	26
9.5.2	53.8	73	65.0	55	11.8	20
9.5 .3	57.2	54	66.9	41	12.2	16
9.5.4	57.2	54	65.4	52	11.9	19
9.5 .5	26.8	167	46.6	152	8.5	53
9.5 .6	42.8	138	54.6	128	9.7	41
9.5 .7	21.4	174	39.4	163	6.9	63

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	GEOM. MEAN ${ }^{1}$		MEAIL_RAL SCORE ${ }^{2}$		MEAIL Z -SCORE ${ }^{3}$	
	AI	RAINK ${ }^{4}$	AI	RAIIK ${ }^{4}$	AI	RAilk ${ }^{4}$
11.1 .1	58.4	48	66.0	47	11.8	20
11.1 .2	54.7	69	63.8	64	11.4	24
11.2 .1	52.4	80	63.8	64	11.4	24
11.2 .2	55.6	61	63.9	63	11.0	28
11.2 .3	67.9	14	72.6	20	12.5	13
11.2 .4	64.0	28	71.6	28	12.4	14
11.3 .1	69.9	11	74.4	13	13.0	8
11.3 .2	69.9	11	74.4	13	12.8	10
11.3 .3	65.8	23	71.9	25	12.4	14
11.4.1	56.7	56	65.5	51	12.0	18
11.4 .2	56.6	57	65.7	49	11.9	19
11.4 .3	56.6	57	64.7	57	11.5	23
11.5 .1	54.0	71	61.1	83	10.9	29
11.5 .2	41.9	143	53.0	137	9.1	47
11.5 .3	55.6	61	63.8	64	11.2	26
12.1 .1	45.7	121	56.0	120	10.0	38
12.1.2	34.4	160	44.1	156	7.8	57
12.1 .3	48.7	105	57.4	111	10.0	38
12.1 .4	57.1	55	62.8	68	11.0	28
12.1 .5	42.8	138	54.0	13.1	9.7	41
12.1 .6	35.0	158	45.9	153	7.8	57
12.1 .7	33.9	162	42.3	159	7.3	60
12.2 .1	58.1	49	63.1	66	11.0	28
12.2 .2	52.0	84	59.8	92	10.3	35
12.2 .3	51.0	92	57.6	109	10.1	37
12.2.4	53.1	77	60.7	87	10.4	34
12.2 .5	51.7	86	58.4	103	10.2	36
12.2 .6	51.1	91	59.2	97	10.4	34
12.2.7	46.1	120	54.6	128	9.3	45
12.3 .1	51.5	87	59.6	94	10.7	31
12.3 .2	59.9	40	65.8	48	11.6	22
12.3 .3	32.7	164	45.9	153	8.3	55

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	GEOM. MEAN ${ }^{\text { }}$		MEAil BAl SCORE ${ }^{2}$		MEALI Z-SCORE ${ }^{3}$	
	AI	RANK ${ }^{4}$	AI	RAIJK ${ }^{4}$	AI	RAIJK ${ }^{4}$
12.3 .4	39.2	151	51.8	141	9.2	46
13.7 .1	45.7	121	57.9	106	9.9	39
13.1 .2	53.7	74	62.3	73	10.6	32
13.1 .3	49.6	98	61.4	80	10.8	30
13.1 .4	44.5	129	56.1	119	10.1	37
13.1 .5	55.2	64	64.7	57	11.5	23
13.2.1	45.2	124	57.4	111	9.8	40
13.2 .2	43.1	137	56.2	118	9.8	40
13.2.3	49.3	100	60.8	86	10.2	36
13.3 .1	36.7	156	51.0	146	8.4	54
13.3 .2	51.2	90	60.5	88	, 10.6	32
14.1.1	46.8	116	57.6	109	10.0	38
14.1 .2	49.0	102	58.9	98	10.0	38
14.1.3	50.8	93	58.8	99	10.1	37
14.1 .4	48.9	103	57.5	110	9.9	39
14.1 .5	49.3	100	57.7	108	10.0	38
14.2.1	53.6	75	64.3	61	11.0	28
14.2 .2	55.4	63	62.4	72	10.4	34
14.2.3	58.9	46	64.9	56	10.8	30
14.2 .4	59.4	43	65.5	51	10.9	29
14.2 .5	66.8	19	73.3	17	12.2	16
14.3 .1	52.5	79	61.7	78	10.2	36
14.3.2	48.5	107	62.4	72	10.1	37
14.3.3	45.5	123	57.8	107	9.8	40
14.3 .4	53.1	77	62.3	73	10.5	33
14.3 .5	60.9	36	66.9	41	11.3	25
14.3 .6	59.3	44	63.5	65	10.6	32
15.1.1	39.2	151	48.9	150	8.7	51
15.1.2	42.4	140	53.0	137	9.3	45
15.2.1	44.3	130	55.1	127	9.8	40
15.2.2	44.6	128	55.7	122	9.9	39
15.2.3	40.7	145	52.7	138	9.4	44

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	GEOM MEAN ${ }^{\text {² }}$		MEAUL RAM SCORE ${ }^{2}$		MEAIL 2 -SCORE ${ }^{3}$	
	AI	RAINK ${ }^{4}$	AI	Raik ${ }^{4}$	AI	RAIIK ${ }^{4}$
15.2.4	45.0	126	57.3	112	10.3	35
15.2 .5	42.3	141	53.5	134	9.5	43
15.2.6	39.1	152	51.6	142	9.1	47
16.1 .1	50.2	95	62.5	71	11.4	24
16.1.2	47.6	112	60.5	88	11.0	28
16.1 .3	46.8	116	58.1	104	10.7	31
16.2 .1	48.6	106	60.3	90	11.0	28
16.2.2	46.1	120	58.0	105	10.9	29
16.2.3	56.1	60	65.6	50	11.7	21
16.2.4	46.1	120	55.3	126	10.1	37
16.2 .5	52.7	78	62.7	69	11.4	24
16.2 .6	60.6	38	69.6	34	12.8	10
16.2 .7	52.2	82	61.8	77	11.2	26
16.2 .8	38.4	153	49.2	149	9.0	48
16.2.9	51.5	87	60.4	89	11.0	28
16.2.10	41.9	143	49.3	148	8.9	49
17.1.1	47.0	115	56.9	114	9.6	42
17.1.2	43.3	136	51.3	144	8.6	52
17.1.3	44.3	130	52.7	138	8.7	51
17.1.4	33.5	163	42.9	157	7.2	61
17.1 .5	47.9	110	57.0	113	9.6	42
17.1 .6	47.3	113	55.4	125	9.3	45
17.1 .7	43.5	134	54.0	131	9.2	46
17.1 .8	71.9	6	76.6	7	12.9	9
17.2 .1	48.4	108	58.5	102	9.8	40
17.2.2	64.7	27	71.2	29	12.0	18
17.2 .3	52.7	78	61.9	76	10.5	33
17.2 .4	44.5	129	56.8	115	9.5	43
17.2 .5	48.4	105	56.8	115	9.6	42
17.2.6	65.0	26	72.3	22	12.1	17
17.3.1	48.4	108	58.5	102	9.8	40
17.3.2	64.7	27	71.2	29	12.0	18

Page E-9

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	GEOM MEAN		MFAL RAM SCORE ${ }^{2}$		MEALI Z-SCORE ${ }^{3}$	
	AI	RAink ${ }^{4}$	AI	RAdJ ${ }^{4}$	AI	RAIIK ${ }^{4}$
17.3.3	52.7	78	61.9	76	10.5	33
17.3.4	44.5	129	56.8	115	9.5	43
17.3.5	48.4	108	56.8	115	9.6	42
17.3.6	65.0	26	72.3	22	12.1	17
17.4.1	48.4	108	58.5	102	9.8	40
17.4.2	64.7	27	71.2	29	12.0	18
17.4.3	52.7	78	61.9	76	10.5	33
17.4.4	44.5	129	56.8	115	9.5	43
17.4.5	48.4	108	56.7	116	9.6	42
17.4.6	65.0	26	72.3	22	12.1	17
17.5.1	48.4	108	58.5	102	9.8	40
17.5.2	64.7	27	71.2	29	12.0	18
17.5.3	52.7	78	61.9	76	10.5	33
17.5 .4	44.5	129	56.8	115	9.5	43
17.5.5	48.4	108	56.7	116	9.6	42
17.5.6	65.0	26	72.3	22	12.1	17
17.6.1	48.4	108	58.5	102	9.8	40
17.6.2	64.7	27	71.2	29	12.0	18
17.6.3	52.7	78	61.9	76	10.5	33
17.6 .4	44.5	129	56.8	115	9.5	43
17.6.5	48.4	108	56.7	116	9.6	42
17.6.6	65.0	26	72.3	22	12.1	17
17.7.1	55.4	63	63.9	63	11.0	28
17.7.2	51.8	85	62.3	73	10.8	30
17.7.3	53.6	75	63.0	67	10.7	31
17.7.4	51.5	87	60.1	91	10.2	36
17.7.5	67.8	15	75.5	10	12.8	10
17.8.1	59.2	45	66.4	46	11.6	22
17.8 .2	52.0	84	62.5	71	10.8	30
17.8 .3	53.6	75	63.0	67	10.7	31
17.8 .4	51.5	87	60.1	91	10.2	36
17.8 .5	67.8	15	75.5	10	12.8	10

TABLE E-1 COMPARISON OF AUTOMATION INDICES FOR AIR TRAFFIC CONTROL TASKS (cont'd)

TASK NO.	GEOM	MEAN	MEAi_RAM SCORE	MEAI $_{2} Z^{2}$ SCORE 3		
	AI	RAINK 4	AI	RAIK	AI	RAIK 4
17.9 .1	43.5	134	53.4	135	9.1	47
17.9 .2	57.8	51	66.7	43	11.2	26
17.9 .3	55.1	65	62.2	74	10.6	32
17.9 .4	46.2	119	59.2	97	9.6	42
17.9 .5	55.0	66	61.6	79	10.3	35
17.9 .6	66.0	22	72.2	23	12.3	15
17.10 .1	67.5	17	72.1	24	12.0	18
17.10 .2	70.0	10	74.1	14	12.7	11
17.10 .3	74.0	3	78.6	2	13.2	6
17.11 .1	57.5	52	65.2	53	11.2	26
17.11 .2	63.0	30	68.3	38	11.6	22

1. Geometric mean of raw scores by all raters for all performance capabilities in the task.
2. Artthmetic mean of raw scores by all raters for all performance capabilities in the task.
3. Arithmetic mean of converted Z-scores by all raters for all performance capabilities in the task.
4. Ranked from highest to lowest value of automation index. Because of numerical ties, there are fewer than 265 "ranks": 176 within the geometric means, 166 within the raw score means, and 68 within the converted score means.

Page E-11
TABLE E-2 COMPARISON OF RANK ORDER OF AIR TRAFFIC CONTROL TASKS BY THREE AUTOMATION INDICES

AI $_{G}$ RANK 1	TASK NO.	AI $_{R}$ RANK 2	A_{C} RAilk 3
1	6.3 .2	1	1
2	6.3 .3	3	3
3	17.10 .3	2	6
4	7.2 .2	8	4
5	8.1 .6	5	2
6	17.1 .8	7	9
7	8.1 .5	6	2
8	6.1 .2	4	5
9	7.1 .2	11	10
10	17.10 .2	14	11
11	11.3 .1	13	8
11	11.3 .2	13	10
12	8.1 .7	12	5
13	6.1 .1	9	8
13	7.3 .2	16	13
14	11.2 .3	20	13
15	17.7 .5	10	10
15	17.8 .5	10	10
16	8.2 .2	18	7
17	17.10 .1	24	18

$A I_{G}$ RANK	TASK NO. $A I_{R} R A M K^{2}$	$A_{C} I_{C}$ RANK	
18	7.3 .3	26	16
19	14.2 .5	17	16
20	2.3 .5	31	18
21	8.1 .3	27	10
22	17.9 .6	23	15
23	11.3 .3	25	14
24	8.1 .4	18	8
25	8.1 .2	21	9
26	17.2 .6	22	17
26	17.3 .6	22	17
26	17.4 .6	22	17
26	17.5 .6	22	17
26	17.6 .6	22	17
27	17.2 .2	29	18
27	17.3 .2	29	18
27	17.4 .2	29	18
27	17.5 .2	29	18
27	17.6 .2	29	18
28	11.2 .4	28	14

1. A_{G} RANK - Rank from highest to lowest value of automation index based on the geometric mean of raw scores by all raters for all performance capabilities in the task.
2. AI_{R} RANK - Corresponding rank obtained by calculation of the automation index using the arithmetic mean of raw scores.
3. AI_{C} RANK - Corresponding rank obtained by calculation of the automation index using the arithmetic mean of converted Zscores.

Page E-12
TABLE E-2 COMPARISON OF RANK ORDER OF AIR TRAFFIC CONTROL
TASKS BY THREE AUTOMATION INDICES (cont'd)

A_{G} RANK $^{\prime}$	TASK NO.	${A I_{R} R A N K}^{2}$	$A_{C}{ }_{C}$ RAiK 3
29	9.1 .3	33	18
30	17.11 .2	38	22
31	6.4 .2	19	6
31	7.1 .4	15	7
32	9.4 .2	33	15
33	8.1 .8	30	13
33	9.4 .1	35	16
34	2.3 .4	38	17
35	7.1 .5	32	13
36	14.3 .5	41	25
37	7.4 .1	36	16
38	16.2 .6	34	10
39	2.3 .3	45	23
40	12.3 .2	48	22
41	7.3 .1	39	17.
42	2.2 .4	51	21
43	14.2 .4	51	29
44	14.3 .6	65	32
45	5.2 .3	47	18
45	17.8 .1	46	22
46	14.2 .3	56	30
47	2.2 .1	40	27
47	6.4 .1	51	23
47	6.4 .3	37	12
48	2.2 .3	44	26
48	11.1 .1	47	20
49	12.2 .1	66	28
50	8.2 .1	42	19
51	17.9 .2	43	26
52	17.11 .1	53	26
53	8.1 .1	59	24
54	9.5 .3	41	16

$A_{G}{ }_{\text {R }}$ RANK ${ }^{\prime}$	TASK NO O.	AI_{R} RAiNK 2	$\mathrm{AIC}^{\text {R RANK }}$
54	9.5.4	52	19
55	12.1 .4	68	28
56	11.4 .1	51	18
57	11.4.2	49	19
57	11.4 .3	57	23
58	6.2.2	60	27
59	2.2.2	55	29
59	5.2.1	62	32
60	16.2.3	50	21
61	5.2.4	60	24
61	11.2 .2	63	28
61	11.5 .3	64	26
62	5.3.1	52	22
62	6.3 .1	39	19
63	14.2.2	72	34
63	17.7 .1	63	28
64	13.1 .5	57	23
65	17.9.3	74	32
66	17.9.5	79	35
67	1.2.2	69	28
67	9.1 .1	46	22
67	9.3 .1	63	20
68	8.2.3	73	32
69	11.1 .2	64	24
70	5.1.2	54	25
71	11.5 .1	83	29
72	7.1 .3	60	26
73	-9.5.2	55	20
74	6.1.3	56	23
74	9.1 .2	58	26
74	13.1 .2	73	32
75	2.1 .6	63	27

Page E-13
TABLE E-2 COMPARISON OF RANK ORDER OF AIR TRAFFIC CONTROL TASKS BY THREE AUTOMATION INDICES (cont'd)

A_{G} RANK 1	TASK NO.	AI_{R} RANK 2	$\mathrm{AI}_{\mathrm{C}} \mathrm{RAiIK}^{3}$
75	2.3 .1	71	25
75	14.2.1	61	28
75	17.7.3	67	31
75	17.8 .3	67	31
76	7.4.4	65	26
77	12.2.4	87	34
77	14.3.4	73	33
78	4.3 .1	84	32
78	16.2 .5	69	24
78	17.2.3	76	33
78	17.3.3	76	33
78	17.4.3	76	33
78	17.5.3	76	33
78	17.6.3	76	33
79	14.3.1	78	36
80	8.1 .9	70	29
80	11.2 .1	64	24
81	4.1 .2	63	28
81	7.2 .1	74	27
82	16.2.7	77	26
83	1.1 .1	95	35
83	1.3 .2	89	35
84	12.2.2	92	35
84	17.8.2	71	30
85	17.7 .2	73	30
86	12.2.5	103	36
87	12.3 .1	94	31
87	16.2.9	89	28
87	17.7 .4	91	36
87	17.8.4	91	36
88	5.2 .2	88	28
89	9.2.2	75	26

AI_{G} RANK	TASK INO.	AI R RAiNK ${ }^{2}$	AI_{C} RAiIK ${ }^{3}$
90	9.5.1	80	26
90	13.3 .2	88	32
91	12.2 .6	97	34
92	12.2.3	109	37
93	14.1.3	99	37
94	$\overline{4} .2 .11$	81	30
94	6.2 .1	84	32
94	6.4.4	82	31
95	16.1 .1	71	24
96	6.4.7	85	31
97	2.3.2	96	35
98	13.1 .3	80	30
99	3.2 .3	83	29
100	13.2.3	86	36
100	14.1 .5	108	38
101	6.4.6	91	34
101	8.2.5	92	32
102	14.1 .2	98	38
103	14.1.4	110	39
104	4.2.3	93	36
105	12.1 .3	11	38
106	16.2.1	90	28
107	14.3 .2	72	37
108	17.2.1	102	40
108	17.2.5	115	42
108	17.3.1	102	40
108	17.3.5	115	42
108	17.4.1	102	40
108	17.4.5	116	42
108	17.5.1	102	40
108	17.5.5	116	42
108	17.6.1	102	40

Page E-14
TABLE E-2 COMPARISON OF RANK ORDER OF AIR TRAFFIC CONTROL TASKS BY THREE AUTOMATION INDICES (cont'd)

AI $_{\mathrm{G}}$ RANK 1	TASK NO.	AI_{R} RANK 2	$\mathrm{AI}_{C} \mathrm{RAiNK}^{3}$	AI_{G} RANK'	TASK NO.	$A I_{R}$ RAiNK	AIC RAANK
108	17.6 .5	116	42	129	13.1.4	119	37
109	4.4.3	104	38	129	17.2.4	115	43
110	17.1 .5	113	42	129	17.3.4	115	43
111	2.1.2	105	40	129	17.4.4	115	43
112	16.1 .2	88	28	129	17.5.4	115	43
113	9.3.2	99	31	129	17.6 .4	115	43
113	17.1 .6	125	45	130	6.1 .5	129	46
114	4.2.4	119	42	130	15.2.1	127	40
115	17.1.1	114	42	130	17.1.3	138	51
116	14.1 .1	109	38	131	1.2.1	133	43
116	16.1 .3	104	31	132	4.2 .10	124	43
117	3.2.2	85	27	133	4.4.4	130	46
118	7.1 .1	101	34	134	17.1 .7	131	46
179	3.2.1	100	32	134	17.9.1	135	47
119	17.9 .4	97	42	135	6.4 .5	127	41
120	12.2 .7	128	45	136	17.1.2	144	52
120	16.2.2	105	29	137	13.2 .2	118	40
120	16.2.4	126	37	138	9.5.6	128	41
121	4.3.4	125	43	138	12.1 .5	131	41
121	12.1 .1	120	38	139	1.3 .1	138	44
121	13.1.1	106	39	139	8.2 .4	144	48
122	2.1.1	105	42	140	15.1 .2	137	45
123	14.3 .3	107	40	141	15.2 .5	134	43
124	4.2.2	117	40	142	1.1 .3	139	47
124	13.2.1	11	40	142	7.4 .3	127	39
125	2.1 .3	121	42	143	11.5 .2	137	47
126	15.2.4	112	35	143	16.2.10	148	49
127	3.3 .1	123	41	144	2.1 .5	143	52
127	4.2 .6	115	40	145	1.1 .2	148	47
127	5.1 .1	120	41	145	15.2.3	138	44
128	2.1 .4	132	48	146	4.1 .1	130	42
128	15.2.2	122	39	147	4.2 .5	142	50

Page E-15
TABLE E-2 COMPARISON OF RANK ORDER OF AIR TRAFFIC CONTROL TASKS BY THREE AUTOMATION INDICES (cont'd)

AI_{G} RANK'	TASK NO.	$A_{R} \mathrm{RANK}^{2}$	$\mathrm{AI}_{\mathrm{C}} \mathrm{RAiNK}^{3}$	$A_{G}{ }_{\text {R }}$	TASK iNO.	$\mathrm{I}_{\mathrm{R}} \mathrm{RA}$	AIC RAAK ${ }^{3}$
147	4.2.9	146	52	161	6.1 .4	140	46
148	4.3.2	141	49	162	12.1 .7	159	60
149	3.3 .2	147	48	163	17.1.4	157	61
150	5.1 .3	132	42	164	12.3.3	153	55
151	12.3.4	141	46	165	4.2 .7	155	60
151	15.1.1	150	51	166	4.4.1	158	58
152	4.2 .1	142	50	167	9.5 .5	152	53
152	15.2.6	142	47	168	3.1 .3	164	66
153	16.2 .8	149	48	169	3.1.2	160	64
154	4.2 .8	146	48	170	5.3.2	154	56
155	3.1.1	136	43	171	4.2 .12	162	65
156	1.3.3	144	48	172	7.4.2	160	59
156	13.3 .1	146	54	173	4.3.3	161	62
157	5.3.3	145	45	174	9.5.7	163	63
158	12.1 .6	153	57	175	3.3 .3	166	67
159	4.2 .13	151.	55	176	4.4.2	165	68
160	12.1.2	156	57				

APPENDIX F
 STATISTICAL PROCEDURES AND FORMULAE

With two possible exceptions, the statistical procedures that were used in the analysis of the data were quite simple.

Raw score data were treated as discrete scores (i.e., were not grouped) in the basic computation of the arithmetic mean, standard deviation (S.D.) and standard error of the mean (SEM). The formulae, in these instances, were as follows:

1. $M=\frac{\Sigma X}{N}$
2. $S D=\sqrt{\Sigma(X-M)^{2} / N-1}$
3. $\operatorname{SEM}=\frac{S D}{\sqrt{N}}$

The computation of the geometric mean of the raw scores per task used the same data base, where the process is the $n^{\text {th }}$ root of $x_{1} \cdot x_{2} \cdot x_{3} \cdot \cdots x_{n}$. This is one of the two unusual statistics. It has the advantage of reducing the essentially spurious correlation between mean and variance that is otherwise present in judgmental ratings with arbitrary scale values.

The computation of the converted scores was, again, conventional. Each raters scores were first aggregated on each capability dimension and the SD was computed for that dimension. A standard score was derived from each raw score by the process:

$$
Z=\frac{X-\bar{X}}{S D},
$$

where \bar{X} is the arithmetic mean by capability for a given rater and $S D$ is the standard deviation for that specific distribution. The resulting Z scores were grouped into 20 class intervals and converted to a standard scale from 1 to 20 to eliminate negative values and decimal fractions. The converted scores (C) were then aggregated for each task in the same way that the raw scores were aggregated.

The checks on the influence of occupation and educational background upon rater predilections was accomplished by use of conventional analysis-of-variance techniques where:

$$
F=\frac{\sum_{\sum}^{K} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2} / d f_{B G}}{\frac{K}{K} n_{i}\left(x-\bar{X}_{i}\right)^{2} / d f_{W G}}
$$

Differences in the n_{i} factor (group size) are not a problem in one-way analysis-of-variance computations where the between-groups score of squares is:

$$
\frac{\left(\begin{array}{l}
n_{i} \\
\Sigma \\
1
\end{array} x_{1}\right.}{n_{i}}+\frac{\left(\begin{array}{l}
n_{i} \\
\Sigma \\
1
\end{array} x_{2}\right.}{n_{i}} \cdot\left(\frac{\binom{\frac{n}{\Sigma} x}{1}^{2}}{n}\right.
$$

and n_{i} is free to vary. The only problem with this approach is the affirmation of the null hypothesis as an issue. In the present instance, what could be said is that individual differences between raters were greater (in one test) or nearly as great (in the second test) as differences between raters grouped by occupation or educational beckground.

A similar logic was used in the diagnosis of problem tasks where relatively low confidence was assigned to task ratings which had high SD or SEM statistics. The objective was to determine whether the variance was attributable primarily to rater disagreement (lack of consensus) or to differential scores assigned to capabilities within the same task. The Fratio in this instance simply pemitted a determination of which source of variance was the larger. No specific 'test of significance' was done since none was required.

The statistic for determining interrater reliabllity is somewhat unusual. The computation is basically a form of multiple correlation where the abscissa is a simple ordering (as in Rho) and the outcome depends on the variation of actual scores around a composite score at each position in the ordinal scale.

The formula is a variation on the Spearman-Brown Rho proposed by Ebel and described by Guilford, as follows:

$$
R_{R}=\frac{V_{T}-V_{E}}{V_{T}}
$$

where R_{R} is the analog of Rho, V_{T} is the variance attributable to tasks (in the present case) and V_{E} is error variance. The data base was composed of the average converted score per task per rater. The data base is organized as a matrix of raters (27) and tasks (265). The computation includes a calculation of all marginal sums of squares and is similar in outline to a two-way analysis of variance. It provides a composite datum having approximately an \underline{r} distribution. Again, no significance test was required.

Page G-1

APPENDIX G

REFERENCES

1. Air Force Systems Command, Personnel Subsystems, Design Handbook DH 1-3, Aeronautical Systems Division, Wright-Patterson AFB, January 1969 (rev.).
2. Autonetics Division, North American Rockwell, Analysis of Advanced Time-Frequency National Airspace Utilization Concept, FAA SRDS, RD-69-32 (3 Vols.) 1969 (AD 695-435, AD 695-436, AD 695-437).
3. Buckley, E. P., and Green, T. H., Information Display in the Air Traffic Control System. The Franklin Institute, FAA/BRD 423, March 1962.
4. Cronbach, L. J., Essentials of Psychological Testing. New York: Harper and Brothers, 1960.
5. Federal Aviation Agency, Data Processing Central, Operational Plan for Simulation, FAA BRD, November 1959.
6. Federal Aviation Administration, The National Aviation System Policy Summary, 1000.27, Appendix 1, March 1972, rev. 1973.
7. Federal Aviation Administration, The National Aviation System Plan, Ten Year Plan 1973-1982, 1000.27, Appendix 2, March 1972.
8. Federal Aviation Agency, Systems Research and Development Service, Design for the National Airspace Utilization System, June 1962 (AD 616-849).
9. Guilford, J. P., Psychometric Methods. New York: McGraw-Hill 1956.
10. The MITRE Corporation, Concepts, Design, and Description for the Upgraded Third Generation Air Traffic Control System, FAA-ED-01-IA, August 1972.
11. Serendipity Associates, A Descriptive Model for Determining Optimal Human Performance in Systems, TR-29-66-32 (U), October 1966.
12. Stevens, S. S. "A Metric for the Social Concensus", Science, 151, pp. 530-541, 4 February 1966.

[^0]: * It should be noted that two raters contributed 395 of the 550 omissions. The remaining 25 raters deleted an average of 6.2 ratings from the set of 770 - or less than 1%. Nine of the raters made no modifications at all.

[^1]: * On the basis of 265 tasks entered into 176 ranks, where a high rank number rejects automation.

[^2]: Heuristic principles for searching functions should be applied when machines are given problem-solving duties.

[^3]: *Note scores are shown for Tasks 2.2.5 and 4.4.5 which were discarded from the functional analysis. No scores are shown for Task 9.2 .2 which was added to the functional analysis subsequent to rating of tasks.

[^4]:

 ono

[^5]:

[^6]:

[^7]: コココニココココココココココニココココココココ

[^8]:

[^9]:

[^10]:

[^11]:

[^12]:

